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TLDR: We propose to construct positional encodings for GNNs using the sheaf Laplacian, in the aim to encode 
both the structural and semantic information from the graph and its node data. 
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Sheaf theory

(i) Precomputed sheaf Laplacian (ConnLap)

(ii) Learnt sheaf Laplacian (SheafLap)

A cellular sheaf            on an undirected graph G = (V, E) consists of: 
• A vector space          for each vertex          . 
• A vector space          for each edge           .
• A linear map                                for each incident node-edge pair         . 

Given a cellular sheaf            , the sheaf Laplacian is a linear map         
                                   , which can be defined node-wise as                        
                                    . Here,                      is a 0-cochain, and       is the 
vector in         of node    .

We propose to construct the sheaf-based positional encodings via 
precomputing or learning the sheaf Laplacian. 

Cellular sheaf

Sheaf Laplacian

The sheaf Laplacian generalises the graph Laplacian: The 
graph Laplacian is a trivial sheaf, by setting all the stalks to 
scalars (d = 1, where d is the stalk dimension) and the restriction 
maps to identity functions.

Graph-level tasks:

Node-level tasks:

Positional encodings inform the nodes of their position in 
the graph, which helps to break the locality constraint from 
message-passing. 


The graph Laplacian is a popular candidate for designing 
positional encodings for graphs, but it encodes purely the 
graph structure, without taking the node data into account. 


However, heterophilic graphs have dissimilar nodes 
connected, reflected by their node features. 

The connection Laplacian is a special form of the sheaf Laplacian with 
an orthogonal matrix. It can be thought of as a discretised 
representation of the vector bundle, which draws an analogy to the 
concept of parallel transport on a manifold. We can compute the 
connection Laplacian by optimally aligning the orthonormal bases [1]. 

We call the vector spaces of the nodes and edges as stalks, 
and the linear maps as restriction maps.

The sheaf Laplacian operator for a given cellular sheaf measures 
the aggregated “disagreement of opinions” at each node. 

0-cochain
The space of 0-cochains                                          is the space formed by 
all the stalks associated with the nodes of the graph, where      denotes the 
direct sum of vector spaces. 

Mean±std MAE (↓) for ZINC and mean±std AUC (↑) for MOLTOX21.

MOLTOX21

We additionally allows ConnLap to evolve following LSPE [3].

Mean±std accuracy with decreasingly heterophilic graphs. Best and Second Best are coloured.

We approximate the restriction map using a 
learnable parametric function                 

[2]. That is,                                    , where      and      
aaa are node features for nodes    and    .

Conclusion & Future work
• The sheaf Laplacian outperforms the graph Laplacian in designing 

positional encodings by additionally taking the node data into 
account, especially for heterophilic graphs. 


• What next? Learnt sheaf Laplacian on graph-level tasks; sign and 
basis invariance; theoretical proofs. 


