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TLDR: We propose to construct positional encodings for GNNs using the sheaf Laplacian, in the aim to encode
both the structural and semantic information from the graph and its node data.

Positional Encodings for GNNs
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Positional encodings inform the nodes of their position in
the graph, which helps to break the locality constraint from
message-passing.

The graph Laplacian is a popular candidate for designing
positional encodings for graphs, but it encodes purely the
graph structure, without taking the node data into account.

However, heterophilic graphs have dissimilar nodes
connected, reflected by their node features.
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Cellular sheaf
A cellular sheaf (G, F)on an undirected graph G = (V, E) consists of:

* A vector space F(v) for each vertex v eV,
e A vector space F(e) for each edge e € E .
e A linear map F,<. : F(v) = F(e) for each incident node-edge pairv <e.
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We call the vector spaces of the nodes and edges as stalks,
and the linear maps as restriction maps.
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0-cochain

The space of 0-cochains C°(G; F) = @,y F(v) is the space formed by
all the stalks associated with the nodes of the graph, where @ denotes the
direct sum of vector spaces.
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The sheaf Laplacian operator for a given cellular sheaf measures
the aggregated “disagreement of opinions” at each node.
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Sheaf Laplacian

Given a cellular sheaf (G;F), the sheaf Laplacian is a linear map Lr :
CYG,F) — CYG,F), which can be defined node-wise as Lx(x), =

D v uge(Fo<eXo — FugeXu) . Here, x € C°(G; F) is a 0-cochain, and Xy is the
vector in F(v) of node v .
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The sheaf Laplacian generalises the graph Laplacian: The
graph Laplacian is a trivial sheaf, by setting all the stalks to
scalars (d = 1, where d is the stalk dimension) and the restriction
maps to identity functions.
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Sheaf-based positional encodings
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We propose to construct the sheaf-based positional encodings via
precomputing or learning the sheaf Laplacian.

(i) Precomputed sheaf Laplacian (ConnLap)
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The connection Laplacian is a special form of the sheaf Laplacian with
an orthogonal matrix. It can be thought of as a discretised
representation of the vector bundle, which draws an analogy to the
concept of parallel transport on a manifold. We can compute the
connection Laplacian by optimally aligning the orthonormal bases [1].

Graph-level tasks:

MOLTOX21
GatedCCN ZINC ZINCHLSPE MOLTOX21 GatedGCN PNA SAN
TestMAE () TestMAE (|) TestAUC (1) TestAUC (1)
No PE  0.251+£0.009 N.A. 77.2+0.6 No PE 77.2+0.6 75.54+0.8 74.440.7
GraphLap 0.202+0.006 0.196+0.008 77.410.7 GraphLap 77.4+0.7 75.24+1.3 73.6+0.3
ConnLap 0.2494+0.005 0.193+0.014 77.9+0.2 ConnLap 77.94+0.2 75.3+0.4 74.5+0.4

Meanz=std MAE (1) for ZINC and meanz+std AUC (T) for MOLTOX21.

We additionally allows ConnLap to evolve following LSPE [3].

(ii) Learnt sheaf Laplacian (SheaflLap)

We approximate the restriction map using a
learnable parametric function ® : R¥*2 — Rdxd
[2]. That is, Fyae—(w,u) = ®(xv,xy), Where x, and
X, are node features for nodes v and u .
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Node-level tasks:

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora

Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81

#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708

#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

No PE 57.30+£5.51 49.80+6.80 25.20+0.69 46.62+3.62 63.97£3.10 45.95+6.84 72.341+1.41 86.431+0.35 84.711+1.23
GraphLap| 58.22+7.03 55.494+12.46 25.13+0.99 47.564+3.03 64.284+3.00 51.354+7.15 73.83+2.07 86.43+0.36 85.0511.47

ConnLap | 58.381+7.76 57.65+6.63 26.53+0.86 47.92+3.53 65.57+2.52 52.97+7.37 73.881+1.84 86.49+0.42 85.13+1.34
SheafLap | 61.08+6.19 54.51+7.22 23.80+1.10 51.11+2.95 65.2+3.10 48.38+5.05 74.35+1.64 85.84+0.65 85.88+1.26

Meanz+std accuracy with decreasingly heterophilic graphs. Best and Second Best are coloured.

Conclusion & Future work

* The sheaf Laplacian outperforms the graph Laplacian in designing
positional encodings by additionally taking the node data into
account, especially for heterophilic graphs.

What next? Learnt sheaf Laplacian on graph-level tasks; sign and
basis invariance; theoretical proofs.
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