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TL;DR: We propose a general neural algorithmic PDNAR: A general NAR framework Experiments

reasoning (NAR) framework for NP-hard problems,

Bipartite graph representation NP-hard algorithmic problems

using the primal-dual approximation algorithm.

Primal ¢ Minimum Vertex Cover (MVC) A general
e Construction: Connecteand Tifee T e Minimum Set Cover (MSC) formulation of a wide
Algorithmic reasoning (the subset contains the element). e Minimum Hitting Set (MHS) 7 range of problems.

e Removal: When e is included in the

Neural algorithmic reasoning (NAR) teaches neural networks Instances are generated using Barabasi-Albert (bipartite) graphs.

to simulate algorithmic execution. solution, remove all its connected 7.

e Uniform increase rule (optional): a virtual A general NAR framework for NP-hard problems

Algorithm Neural network

node 7z that connects to all duals.

10

B —"— D ~ Table 1. Model-to-algorithm weight ratio (smaller is better) trained on 16-
/ \ \ F + node graphs and tested on larger graphs.
A
N o I E 16 (1x) 128 (8x) 512(32x) 1024 (64x)
| | | | 3 Architectural design GAT 0.962 1.071 1.114 1.125
Fixed input formats Rich domain-specific features : : : : NAR 0.998 1.002 1.013 1.018
| | §<.... Encoder ....> E é ................. Processor ................... >§€-... Decoder....>§ Ve No a|go 1142 1.099 1.099 1.095
Most works on NAR focus on polynomial-time-solvable " No optm 0.995 0.998 0.998 0.994
t
oroblems, but many real-world problems are NP-hard! rD | f h Gz |y 5 PDNAR (max) 0.968 1.005 1.010 1.007
: T - v b hff) e PDNAR 0.943 0.958 0.958 0.957
| g, > hY v Gu No algo 1.028 1.017 1.008 1.006
dt=V— | fq > SNVEE (1) MSC | No optm 1.008 0.992 0.973 0.975
° o ° e (t) | 111111 | q'r' —> ’]"g
Primal-dual approximation B v : PDNAR 0.979 0.915 0.915 0.913
R s hqﬁt) No algo 1.047 1.036 1.122 1.256
Duality: Each optimization problem can be viewed from - Qz|_, A® MHS | No optm 1.002 0.997 1015 1.053
, e il 4 e PDNAR 0.989 0.965 0.996 1.027
two perspectives: the primal and the dual.
T T T T T T T T T T T T T T T s T e e e N > g5 — 5y e Algorithmic reasoning enhances generalization.

Minimum Hitting Set e Optimal supervision enables the model to surpass the

Given a set of subsets 7, each containing some elements performance of the underlying algorithm.

e Encoder: Maps scalar inputs (e.g. r,) to teature vectors.

e € E, ahitting set A covers at least one element e from * Processor: Simulate algorithmic steps with message-passing:

Robust to size and OOD generalization

each subset T. The goal is to minimize the total (non-

+ L5: hg_,f): min ge(h(et),hge)) — aggregate

Table 2. Model-to-algorithm weight ratio (smaller is better) trained on 16-
] eeN(T)
Z h?) — update

node Barabasi-Albert (bipartite) graphs, and tested on OOD graph families.
Note b is the preferential attachment parameter (trained on b=>5).

negative) weights of elements in A.
N —

Let x, (primal) represent whether to include element e in A,

. R . h(t)
and y;(dual) represent the weight assigned to subset T. * Lo . ( °

TEN (e) 16(1x)  128(8x)  512(32x) 1024 (64x)
: : — . E-R 0.955 0.950 0.989 0.993
Algorithm 1 General primal-dual approximation algorithm e Decoder: Produce outputs (e.g. x,) from feature vectors. e | S 0.966 0.982 0.992 0.998
Input: Ground set E with weights w, family of subsets 7 C 2% Lobster | 0.971 0.960 0.966 0.966
I: Ah<_l %’_}forju GTE Eécia — We The virtual node allows simultaneous updates of all dual variables, 3-Con 0.574 0.957 0.%62 0.%01
2: while :ANT =0do . . H=3 0.943 0.918 0.929 0.922
extending PDNAR to a broader range of algorithms (e.g. greedy).
3: V{T:ANT =0} . J J J (€.9- 9 2 VS b=8 0.969 0.940 0.941 0.943
, Increase dual variables
4 repeat S =3 0.988 0.982 1.008 1.005
5: for T € Vdoor < min.c7 { |{T,:2€€T,}| } Do H=8 0.979 0.960 1.008 1.014
6: forec E\Ador. < 1c— ) . .crOr J g. . . . . e
7. until 3e ¢ A : 7o = 0 | * [ntermediate algorithmic steps synthetically generated by We also showcase two applications of PDNAR:
. L Te =
]: A+« AUu{e:r, =0} Update primal variables running the primal-dual approximation algorithm. e Algorithmically-informed embeddings to improve
Output: A e (Optimal solutions efficiently obtained by solving small GNN pertformance in real-world datasets.

When a constraint is met for a primal variable (L7), include it
into the solution (L8). Repeat until a hitting set is found (L2).

problems using integer programming solvers.

We test generalization to larger instances through theoretically
justitied algorithmic alignment.

e \Warm starts to speed up commercial solvers.

More details in the full paper — [w]




