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Abstract

Graph Neural Networks (GNNs) apply deep learning techniques to graph-structured data,

leveraging the relational information between entities. However, the expressive power of

GNNs is limited by the local interactions between connected nodes, causing GNNs to

produce indistinguishable node embeddings when two nodes share similar local neigh-

bourhoods. Moreover, GNNs can fail to distinguish structurally distinct graphs when a

set of identical node embeddings are aggregated.

To address this issue, we use positional encodings to inform the nodes of their global

positions in the graph, breaking the locality constraints. Positional encodings can provide

global structural information to help the nodes differentiate from each other, and hence

improve the expressive power of GNNs in identifying substructures and distinguishing non-

isomorphic graphs. Furthermore, positional encodings are crucial for the effectiveness of

Graph Transformers. Graph Transformers apply an attention mechanism over a fully-

connected graph, losing the input graph topology. Therefore, positional encodings are

necessary to complement Graph Transformers with the structural information from the

original graph.

In this project, we propose a novel form of positional encodings based on a structure

from geometry and topology, namely a sheaf. The sheaf Laplacian generalises the graph

Laplacian, which is the basis for many existing positional encoding designs. The sheaf

Laplacian can encode the algebraic and topological structure of the graph, producing a

more expressive positional embedding space. We investigate the use of pre-computed and

learnt sheaf-based positional encodings, analysing their trade-offs between computational

efficiency and expressivity.

We demonstrate that sheaf-based positional encodings outperform current graph Lapla-

cian positional encodings on node-level and graph-level tasks, indicating their local and

global effectiveness. We also show that our positional encoding design is model-agnostic

and test it across architectures, including Graph Transformers. Our work contributes to

the study of sheaves within the graph learning context, motivating further investigation

into designing novel GNN techniques using concepts from geometry and topology.



Acknowledgements

This project would not have been possible without the unwavering support of my supervi-

sors, Dr Cristian Bodnar and Prof. Pietro Liò. Cris has been an amazing supervisor,
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Chapter 1

Introduction

Deep learning is a flourishing field in which neural networks are used to learn patterns

from high-dimensional data. Many real-world datasets have inherent graph structures,

where data entities are connected through their intrinsic relationships. However, a feed-

forward neural network does not utilise such relational information in its predictions,

inhibiting its ability to generate a precise hypothesis space. This limitation motivates

the introduction of Graph Neural Networks (GNNs) [1, 2, 3], which directly operate on

graphs to preserve the topology. GNNs have demonstrated their effectiveness across a

wide range of applications, including protein interface prediction [4], social networks [5],

and knowledge graphs [6].

Figure 1.1: Examples of real-world data with graph structures.

However, GNNs suffer from limited expressive power [7]. In general, GNNs follow a

message-passing paradigm [2, 8], where a node gathers messages from its neighbours.

The locality is essential for scalability, but it also constrains the knowledge of each node

to its local structure. This limited view poses a challenge for GNNs to differentiate distinct

nodes. For instance, in Figure 1.2(a), even though two nodes v and u are far apart in

the graph, GNNs may produce the same node embedding as they share an identical local

structure. While node features can help to distinguish the nodes, they are not guaranteed

to be unique. This issue can be particularly problematic when projected onto real-life

applications, such as molecules and social media, where it is common to have nodes that

share similar local neighbourhoods.

In addition, GNNs can fail to distinguish some graphs that are structually different. Some
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Figure 1.2: (a) and (b) are a pair of structurally distinct graphs, representing two chemical
compounds [9]. Same colour indicates same node embedding generated by a GNN. (c) A
GNN produces an identical graph embedding for the two graphs.

tasks require GNNs to produce a graph embedding, which can be obtained by aggregating

all node embeddings through a graph-level pooling layer. Ideally, graph embeddings

should only be identical if the graphs are structurally the same. However, as exemplified

in Figure 1.2, two structually different graphs may share the same set of node embeddings

due to the locality constraint of GNNs, receiving an identical graph embedding. This

problem can lead to false graph-level predictions, because structurally different graphs

tend to have distinct labels.

1.1 Motivation

To improve the expressive power of GNNs, we focus on using positional encodings (PEs)

to make the nodes aware of their global positions in the graph, as illustrated in Figure

1.3. PEs have been used in natural language processing to encode the token positions

in a sequence. Similarly, in the context of GNNs, we construct PEs to encode the node

positions in a graph. However, nodes in a graph lack a canonical order to assign sequential

indexing, making the definition of PEs non-trivial.

Figure 1.3: (a) Two nodes v and u share the same local neighbourhood and node feature.
(b) We can augment them with positional encodings (PEs) to make them distinguishable.
(c) Our goal is to design a positional embedding space to encode the graph structure.

Furthermore, PEs play an essential role in Graph Transformers, which are variants of

2



GNNs that generalise the Transformer [10] architecture onto graphs. Just as how Trans-

formers treat each token in the sequence as independent and augment the token with its

positional information using PEs, Graph Transformers apply the attention mechanism

over a fully-connected graph, requiring PEs to make up the loss of the graph topology.

Hence, the design of PEs is crucial to enhance the expressivity of Graph Transformers.

The eigendecomposition of the graph Laplacian provides an embedding space that re-

spects the graph topology [11], making them a popular form of PEs [12, 13]. However, a

problem arises when there exist complex relationships between the nodes. For example,

unlike homophilic graphs, where nodes with similar representations are positioned closer

(‘like attracts like’), heterophilic graphs have dissimilar nodes connected. The graph

Laplacian only encodes the adjacency information and is independent of the node data.

Consequently, the positional embedding space constructed from the graph Laplacian may

become unsuitable for these graphs.

We propose using the sheaf Laplacian to construct more expressive PEs that address this

issue. A cellular sheaf is a mathematical structure from geometry and topology. It has

the ability to encode both the algebraic and topological structures parameterised by the

node data, allowing more complex relationships between the nodes to be expressed. Such

a property gives the sheaf Laplacian a potential to construct a positional embedding space

that incorporates both structural and semantic information of the graph, adapting it to

more challenging domains such as heterophilic graphs.

1.2 Contributions

Our contributions can be summarised as follows:

• We propose a novel design of positional encodings using sheaf theory. The sheaf-

based PEs outperform current methods based on the graph Laplacian, demonstrat-

ing their effectiveness on both node-level and graph-level tasks.

• We design two forms of sheaf-based PEs. The first method computes the sheaf

Laplacian at preprocessing time. We also augment it with an evolvable mechanism

to address its limitation on less informative input data.

• We propose a second design by learning a sheaf from the input data and address

the challenges in training-time eigendecomposition. We also analyse different sheaf

types and the effect of the Laplacian normalisation.

• Empirically, we evaluate our model-agnostic sheaf-based PEs across architectures,

covering both sparse GNNs and fully-connected Graph Transformers. We also com-

pare PEs on a set of node-level tasks, in addition to the graph-level tasks, which

have been the focus of previous works.

3



Chapter 2

Background & Related Work

This chapter explains why PEs are useful for GNNs by providing the theoretical founda-

tion to understand this project and discussing related works. We begin by introducing the

theory of GNNs and the message-passing mechanism employed by them (Section 2.1). We

then explain how this mechanism limits the expressivity of GNNs (Section 2.2). We also

discuss several solutions to address this issue, motivating the use of PEs. Moreover, we

emphasise the importance of PEs for Graph Transformers (Section 2.3). This is followed

by a review of current PE methods (Section 2.4), establishing the connection between our

sheaf-based PEs and related works.

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) [1, 2, 3] are neural networks that operate directly on

graph-structured data, leveraging the relational information between the nodes. An input

graph can be represented as G = (V,E), where V is the set of nodes and E is the set of

edges. For each node v ∈ V , its node representation is a vector hv ∈ Rdh , where dh is the

dimension. Optionally, we can have edge representations to denote the relations between

nodes ev→u ∈ Rde , with de as the dimension.

The inference tasks for GNNs can be classified into three main categories, depending on

the level where the prediction is made:

• Node-level: These tasks predict a label for each node in the graph. The goal

is to learn a proper representation hv for each node v ∈ V . One example is the

classification of documents in a citation network.

• Edge-level: Edge-level tasks predict the property or existence of edges. This re-

quires learning a proper representation ev→u for each edge ev→u ∈ E. Examples

include determining whether two users in a social network are friends.

• Graph-level: Some tasks predict the label of the whole graph. This involves

4



mapping the graph to a graph embedding gG. For instance, the prediction of a

molecule’s chemical property.

2.1.1 Message-passing paradigm

GNNs generally follow a message-passing paradigm [2, 8] as illustrated in Figure 2.1,

where nodes exchange messages with their connected neighbours to update their own

representations. If we omit edge features for clarity, each node v ∈ V updates its node

representation hv via:

hl+1
v = ϕl

(
hl
v,
⊕

u∈N (v)

ψl(hl
v,h

l
u)
)

(2.1)

where l is the layer number, N (v) = {u ∈ V |(u, v) ∈ E} is the one-hop neighbourhood of

node v, and ϕl, ψl are commonly implemented as Multilayer Perceptrons (MLPs).

ψl

hl
v

hl
u

hl+1
v

ϕl

Figure 2.1: In one message-passing step, a node gathers messages from its neighbours
(left) and updates its node feature using the aggregated message (right).

To interpret Equation 2.1, at each layer l, a node computes a message from its connected

neighbours using a message function ψl, then aggregates the message with a permutation-

invariant aggregation operator
⊕

. Finally, the node uses the message to update its node

representation with a readout function ϕl.

The permutation invariance property of the aggregation operator
⊕

is essential for the

local operation on graphs. In practice, node representations are stacked together as a

matrix H ∈ R|N (v)|×dh as input to
⊕

. Since there is no canonical order for the neigh-

bouring nodes, the aggregated results should be identical regardless of the node order, i.e.⊕
(H) =

⊕
(PH) for any permutation matrix P. Therefore,

⊕
should be permutation

invariant, such as element-wise sum, mean, or max. Below, we briefly describe the three

GNN models used in the evaluation.

2.1.2 Graph Convolutional Network (GCN)

GCN [1] is one of the most popular GNN frameworks due to its efficiency. Its convolution

operation is based on a spectral filter for node signals in the Fourier domain, which is
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then localised to the 1-hop neighbourhood for better scalability. Formally, for each node

v ∈ V , a GCN layer updates the node representation hv via:

hl+1
v = σ

 ∑
u∈N (v)∪{v}

√
1

(deg(v) + 1)(deg(u) + 1)
Wlhl

v

 (2.2)

where l is the layer number, N (v) is the 1-hop neighbourhood of node v, deg(·) denotes the
node degree, W is a layer-wise weight matrix, and σ is a non-linear activation function.

2.1.3 Residual Gated Graph ConvNets (GatedGCN)

Inspired by the success of LSTM [14] and ConvNets [15], [16] proposes a natural extension

onto graphs. They propose to use an edge gating mechanism to learn the importance of

edges when passing messages. In GatedGCN, ηvu is a gate for an edge u→ v defined as:

ηvu = σ(Alhl
v +Blhl

u) (2.3)

where A and B are layer-wise weights, and σ is a non-linear activation function. The

overall update rule additionally uses a residual mechanism:

hl+1
v = ReLU

(
Ulhl

v +
∑

(u,v)∈E

ηvu ⊙Vlhl
u

)
+ hl

v (2.4)

where l is the layer number, and U,V are layer-wise trainable weights.

2.1.4 Principal Neighbourhood Aggregation (PNA)

Most GNN architectures use a single aggregation operator (
⊕

in Equation 2.1), usually

choosing from sum, mean, or max. PNA [17] was proposed to combine multiple aggre-

gation schemes with degree-scalars for more expressive and robust GNNs. The overall

aggregation function is defined as:

⊕
=

 identity

amplification

attenuation

⊗


mean

max

min

std

 =

 S(V, α = 0)

S(V, α = 1)

S(V, α = −1)

⊗


mean

max

min

std

 (2.5)

where S(v, α) is the degree-scalar for each aggregator controlled by α, and δ is a normal-

isation parameter computed over the training set:

S(v, α) =

(
log(deg(v) + 1)

δ

)α

, −1 ≤ α ≤ 1 (2.6)

δ =
1

|train|
∑

G∈train

∑
v∈V

log(deg(v) + 1) (2.7)
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2.2 Expressivity of GNNs

The message-passing paradigm is centred on pairwise communication within a local neigh-

bourhood, providing high scalability. However, this locality also leads to a problem. GNNs

can fail to distinguish structurally distinct graphs or even recognise simple substructures.

This limitation of GNNs is well understood through the analogy to the Weisfeiler-Lehman

test on graph isomorphism [7].

2.2.1 Weisfeiler-Lehman test

Graph isomorphism is an important concept in graph theory, capturing whether two

graphs are topologically identical. It remains a challenging problem where no polynomial

time solution exists [7].

Definition 1 (Graph isomorphism) Two graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic (G1 ≃ G2) if there exists a bijection between their verticies f : V1 → V2, such

that f preserves the adjacency of verticies, i.e. if (v, u) ∈ E1 then (f(v), f(u)) ∈ E2.

Figure 2.2: A pair of isomorphic graphs successfully identified by the 1-WL test. Example
adapted from [18].

The Weisfeiler-Lehman test [19] is a polynomial-time algorithm to determine graph iso-

morphism for a certain class of graphs [20]. An example of running the 1-dimensional

Weisfeiler-Lehman (1-WL) test is illustrated in Figure 2.2. At initialisation, each node

v ∈ V is assigned the same colour C0
v . In each iteration, a node aggregates a multiset of

colours from its neighbouring nodes, and generates a random hash as its new colour:

Ct+1
v = hash(Ct

v, {Ct
u, for u ∈ N (v)}) (2.8)

The algorithm converges when two graphs have different multisets of node colours, dis-

tinguishing them as non-isomorphic. Otherwise, the algorithm stops after n iterations,

where n is the number of nodes.

7



2.2.2 GNNs are at most as powerful as the 1-WL test

We can observe the similarity between the update function of 1-WL test (Equation 2.8)

and message-passing (Equation 2.1). They both aggregate information from a node’s local

structure and use it to update the node representation. In fact, GNNs are at most as

powerful as the 1-WL test, as proven in [7, 21]:

Lemma 1 Let G1 and G2 be any two non-isomorphic graphs. If a GNN f : G → Rd

produces different graph embeddings for G1 and G2, then the 1-WL test also decides that

G1 and G2 are non-isomorphic.

Figure 2.3: A pair of non-isomorphic graphs failed to be distinguished by the 1-WL test
and a message-passing GNN.

Failed cases in distinguishing non-isomorphic graphs However, the 1-WL test is

only a heuristic for the graph isomorphism test, failing to distinguish some non-isomorphic

graphs, such as regular graphs [22, 23, 24]. One failed case is illustrated in Figure 2.3.

For these graphs, the 1-WL test produces the same multiset of node colours. Similarly,

GNNs generate an identical set of node representations, falsely identifying the graphs as

isomorphic, leading to an identical graph-level prediction. This becomes an issue for real-

world data such as molecules, where two non-isomorphic graphs commonly have different

graph-level labels.

2.2.3 Increasing the expressivity of GNNs

Ideally, a maximally expressive GNN should only map the graphs to the same embedding

if they are isomorphic, and produce different embeddings for non-isomorphic ones. Many

efforts have been invested in increasing the expressive power of GNNs to surpass the 1-

WL test. We motivate the use of positional encodings by comparing them with several

existing approaches.

Higher-order iteractions The message-passing paradigm exchanges information in a

pairwise fashion. Therefore, many solutions utilise higher-order interactions between some

form of substructures or groups of nodes. One extension from the pairwise interaction is
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the communication between k-tuples of nodes, which is analogous to the k-dimensional

WL test [21]. On the other hand, hypergraphs, where a set of nodes are connected to each

hyperedge, can also propagate higher-order signals [25, 26, 27]. Furthermore, node rep-

resentations can be computed over simplicial complexes [28] and cellular complexes [29],

lifting the graph into higher-order topological structures to facilitate hierarchical message-

passing. However, the problem with these approaches lies in the high computational cost,

making them less scalable to larger graphs.

Learning over subgraphs Another line of work learns over subgraphs, by redefining

the neighbourhood through shared nodes in multiple subgraphs [30, 31]. The motivation

comes from the observation that two hard-to-distinguish graphs often contain subgraphs

that are easier to distinguish by GNNs. Similarly, the subgraph selection policy is non-

trivial and very costly, which may require stochastic sampling to mitigate [31].

Positional encodings (PEs) Since message-passing limits a node’s view to its local

neighbourhood, we can use PEs [32, 12, 33, 34] to explicitly make it aware of its global

position in the graph. PEs are usually concatenated to the node or edge features as inputs

to the GNNs. The global knowledge from PEs can help GNNs to distinguish graphs and

substructures.

This project focuses on using PEs to increase the expressive power of GNNs. PEs can be

computed during preprocessing, and are usually more computationally efficient than other

approaches. Furthermore, PEs only use the knowledge of the input graph, making them

model-agnostic. The above benefits of PEs make them excellent candidates to address

the expressivity limitation of GNNs.

2.3 Positional encodings for Graph Transformers

In addition to improving the expressive power of GNNs, PEs also play an essential role

in Graph Transformers. Graph Transformers apply an attention mechanism over a fully-

connected graph, losing the graph topology. Therefore, PEs are required to augment the

nodes with their positional information in the input graph.

2.3.1 Graph Transformers

GNNs based on the message-passing mechanism are efficient and scalable by performing

local computation on sparse graphs. However, the sparsity also puts GNNs at risk of

some fundamental limitations. In sparse graphs, information may take many layers to

propagate between nodes separated by a long distance. One problem with stacking mul-

tiple layers is over-smoothing [35], where node representations become indistinguishable

through repeated aggregation. Another problem is over-squashing [36], where information
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from an exponential number of nodes passes through a single node, leading to potential

information loss as information gets compressed into a fixed-size vector.

Graph Transformers (GTs) [13, 34, 37, 38, 39, 40] were proposed to address these issues

by generalising the Transformer architecture [10] to graphs. Take a graph G and its node

representation matrixH ∈ Rn×dh , a Graph Transformer alternatively performs multi-head

attention (MultiHead) and fully-connected feed-forward network (FFN) at each layer l to

update the node representations:

Hl+1 := FFN(MultiHead(Hl) +Hl) (2.9)

The multihead attention concatenates multiple single attention heads with an output

reshaping. A single attention head is computed via:

Attn(Hl) := softmax(
QKT

√
dk

V) (2.10)

where matrices Q, K, and V are linear projections of Hl, dk is the dimension of Q and

K, and softmax is applied row-wise.

A fully-connected feed-forward network is equivalent to a complete graph with pairwise

communication. Therefore, Graph Transformers operate over a fully-connected graph

to capture global and long-range interactions, addressing the over-smoothing and over-

squashing issues from sparse graphs [34]. However, not using the input graph also means

that Graph Transformers lose the structural information, only retaining the number of

nodes. Therefore, the expressive power of using a fully-connected graph is equivalent

to DeepSets, [41] where no edge presents. To restore the topological awareness on the

input graph, it is critical for Graph Transformers to equip with PEs to improve their

expressivity while maintaining the advantages from the Transformer layers.

2.3.2 Spectral Attention Network (SAN)

SAN [13] is one popular Graph Transformer that uses learnt PEs by applying a Trans-

former over the eigenfunctions of each node. Its main Transformer layer employs a multi-

head attention over all nodes:

hl+1
v = Ol

h

H∣∣∣∣∣∣
k=1

(∑
u∈V

wk,l
vuV

k,lhl
u

)
(2.11)

where H is the number of heads, l is the layer number,
∣∣∣∣∣∣ is concatenation of multiple

single-head attention, and Ol
h,V

k,l are learnable weights. Additionally, it applies separate
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attention mechanisms depending on whether an edge exists in the original graph:

ŵk,l
uv =


(
Q1,k,lhv ◦K1,k,lhl

j ◦ E1,k,levu
)/√

dk if v and u are connected in sparse graph(
Q2,k,lhv ◦K2,k,lhl

j ◦ E2,k,levu
)/√

dk otherwise

(2.12)

wk,l
vn =

 1
1+γ

· softmax(
∑

dk
ŵk,l

vu) if v and u are connected in sprase graph

γ
1+γ

· softmax(
∑

dk
ŵk,l

vu) otherwise
(2.13)

SAN was the first fully-connected Graph Transformer that performed well on benchmark-

ing graph datasets [13]. Its strength lies in its awareness of the Laplace spectrum of the

input graph through learnt PEs. These PEs are initialised with the graph Laplacian,

which makes the architecture suitable for testing our sheaf-based PEs.

2.4 Related works

Positional information is crucial in many learning tasks. For example, in natural language

processing, tokens in an input sentence have sequential ordering. The semantic meaning

of the sentence may change when the positions of some tokens are swapped. Recurrent

Neural Networks [42] leverage the positional information by sequentially processing the

inputs. On the other hand, Transformers [10] treat each token as independent to apply

the attention mechanism, requiring PEs to explicitly capture their positions in the input

sequence. Similarly, in computer vision, filters in Convolutional Neural Networks [15] are

found to implicitly encode the absolute positions of pixels in an image [43].

In GNNs, such positional indexing becomes non-trivial due to the absence of a canonical

order within the nodes, making it challenging to define PEs for GNNs. Current approaches

either append PEs to node or edge features, and can be categorised according to the

positional information they capture [39].

Figure 2.4: Three types of positional encodings.
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2.4.1 Local positional encodings

PEs can be defined locally within a node cluster, reflecting the closeness between these

nodes. For example, we can compute the distance to the centroid of a cluster, or the sum

of each column in a random walk matrix. However, local PEs are still constrained by

the notion of locality, only increasing the diameter of the neighbourhood than the 1-hop

pairwise communication in message-passing.

2.4.2 Global positional encodings

On the other hand, global PEs capture the node position in the whole graph, breaking

the locality constraint with such global knowledge.

Unique indexing Earlier PEs assign a unique identifier to each node via indexing [44].

The arbitrary choice of assignment requires the network to learn all n! permutations.

Therefore, the index assignment is sampled from a uniform distribution. Furthermore,

although unique indexing differentiates nodes globally, it does not capture any meaningful

structural information from the graph.

Graph Laplacians The graph Laplacian provides an effective method to compute PEs

for graphs. The graph Laplacian can be constructed using the degree and adjacency

matrices. Its eigendecomposition is a spectral technique that embeds the graph into a

Euclidean space, providing a unique PE for each node. However, the graph Laplacian

PEs are purely structural and suffer from sign ambiguity [12, 13, 45], spurring a number

of works to address these issues.

In [46], they propose to treat the graph Laplacian PEs as the solution to a minimisation

of dissimilarity between positional embedding and graph structure. They design a more

generalised form of such dissimilarity function to go beyond the 2-norm in the graph

Laplacian. On the other hand, by decoupling structural and positional representations,

[47] proposes to learn the PEs combined with the structural GNNs. This method aims to

construct more expressive PEs for arbitrary graphs. Similarly, [48] uses separate channels

to update node features and PEs, but with a focus on maintaining the permutation

equivariance for more expressive positional features.

However, eigendecomposition comes with sign ambiguity, requiring the model to learn an

exponential number of sign possibilities. The above proposals mostly randomly flip the

sign of the eigenvectors during training to approximate sign invariance. To tackle this

problem, [49] proposes SignNet, which is dedicated to learning the sign invariance for

PEs.
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2.4.3 Relative positional encodings

Both local and global PEs are appended to the node features as inputs. An alternative

method computes relative PEs between two nodes, adding to their edge features. Relative

PEs capture the notion of distances or directional relationships between two nodes.

Shortest path One way to represent the relative distance between two nodes is using

the shortest path that connects them. However, a complete shortest-path matrix can

be computationally expensive. In [32], they propose to use a set of randomly sampled

anchor nodes to compute the shortest paths. Additionally, their method learns a distance-

weighted aggregation scheme over the anchor nodes to make them more generalisable.

Later, [37] proposes a Spatial Encoding that uses the shortest path to measure the spatial

relation between nodes. They further associate the encoding with a learnable scalar to

integrate it with a Transformer layer.

Random walk matrix Another line of relative PEs utilises the random walk matrix.

In [33], they propose Distance Encodings to learn the structural representation of sub-

structures, instead of the whole graph, for efficiency. PEs are defined by the distance

from the substructure to all other nodes, calculated based on the landing probability of

random walks. To reduce the complexity, [47] extends the design by only considering the

landing probability of a node to itself, while maintaining its effectiveness. A random walk

matrix does not suffer from the sign ambiguity problem of the graph Laplacian matrix.

Diffusion kernels Heat kernel matrix is another metric to measure the relative distance

between the nodes. At each timestep, a heat kernel matrix represents the amount of heat

transferred from one node to another, simulating a heat diffusion process. Such concept

has been utilised in designing relative PEs, such as [50, 51].

2.4.4 Structural Encodings

Apart from PEs, there exists a concept of structural encodings [39]. Rather than represent-

ing the positional information of each node, structural encodings represent the structure

of a graph or its substructures. However, the design of structural encodings is closely

related to its positional counterpart. For example, we can take the eigenvalues, instead of

the eigenvectors, of the graph Laplacian to be appended as a global structural encoding

for a graph. Structural encodings can also be used to construct PEs, such as counting

the number of triangles which a node belongs to. Similarly, structural encodings can be

categorised as local, global, or relative, depending on the encoded structure scope.
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2.5 Summary

This project focuses on designing a novel form of global PEs to improve the expressive

power of GNNs in identifying substructures and distinguishing non-isomorphic graphs. As

discussed in Section 2.4, PEs can be a computationally efficient way to counter the locality

limitation suffered by GNNs by introducing global knowledge of the graph. Furthermore,

PEs are also essential to the effectiveness of Graph Transformers, as elaborated in Section

2.3.

More specifically, we aim to extend the graph Laplacian PEs to incorporate semantic infor-

mation from the nodes, in addition to the structural information of the graph. Knowledge

of the node features can be valuable to break symmetries when two nodes are structurally

isomorphic. To achieve this goal, we borrow a mathematical tool from algebraic topology,

namely a sheaf. The sheaf Laplacian is a more generalised form of the graph Laplacian.

While the graph Laplacian only encodes the graph structure, the sheaf Laplacian has

the ability to take the node data into account, enabling it to represent more complex

relationships between the nodes.

Finally, we motivate our design by relating it with other types of PEs and structural

encodings. Local PEs can be considered a special form of global PEs by taking the

substructure rather than the entire graph. Moreover, if we use the gradient of eigenvectors

from sheaf-based PEs, we can obtain relative PEs to augment the edge features. Similarly,

we can build structural encodings with sheaf-based PEs by taking the eigenvalues instead

of the eigenvectors. Therefore, while our focus lies on building global PEs, the potential

impact of our idea can be easily extended to other domains.
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Chapter 3

Background: Sheaf Theory

Since we are constructing PEs using a sheaf, we now explain the sheaf theory in more

depth. We first introduce the concept of a cellular sheaf (Section 3.1). Moving forward, we

describe the computation of the sheaf Laplacian (Section 3.2), which is used to construct

sheaf-based PEs. Lastly, we offer a review of existing works that incorporate sheaf theory

in GNNs (Section 3.3), motivating the significance of sheaf in the graph learning context.

3.1 Cellular sheaf

In algebraic topology, a cellular sheaf [52, 53] is a mathematical object associated with a

graph by attaching vector spaces to nodes and edges. It also defines a map between these

vector spaces for each incident node-edge pair, specifying the consistency constraints of

the data.

Figure 3.1: A sheaf (G,F) for an edge e connecting two nodes v and u. It associates each
node and edge with a vector space (F(v) and F(e)) and defines a linear map between
them (Fv⊴e). Figure adapted from [54].

Definition 2 (Cellular sheaf) A cellular sheaf (G,F) on an undirected graph G =

(V,E) consists of:

• A vector space F(v) for each vertex v ∈ V .
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• A vector space F(e) for each edge e ∈ E.

• A linear map Fv⊴e : F(v) → F(e) for each incident node-edge pair v ⊴ e.

The vector spaces of the nodes and edges are called stalks, while the linear maps for the

node-edge pairs are called restriction maps. The stalks of nodes and edges form the 0-

and 1-cochain, respectively.

Definition 3 (0-cochain) The space of 0-cochains C0(G;F) :=
⊕

v∈V F(v) is the space

formed by all the stalks associated to the nodes of the graph, where
⊕

denotes the direct

sum of vector spaces.

Definition 4 (1-cochain) The space of 1-cochains C1(G;F) :=
⊕

e∈E F(e) is the space

formed by all the stalks associated to the edges of the graph.

These two cochains lead to the definition of a co-boundary map δ : C0(G,F) → C1(G,F).

The co-boundary map δ measures the inconsistency between all the nodes. For two nodes

v, u ∈ V , their node data xv ∈ F(v) and xu ∈ F(u) are considered as consistent over an

edge e ∈ E if Fv⊴exv = Fu⊴exu.

Definition 5 (Co-boundary map) Given an arbitrary orientation of an edge e = u→
v, the co-boundary map δ : C0(G,F) → C1(G,F) is defined as (δx)e = Fv⊴exv −Fu⊴exu,

where x is a block-vector stacking all node data xv for all v ∈ V .

We now provide an intuitive interpretation from the perspective of opinion dynamics, as

proposed in [55]. The node stalk F(v) can be seen as the space of “private opinions”

for a node v, where the node data xv ∈ F(v) is the value of an opinion. The edge stalk

F(e) forms a public “discourse space” shared by node opinions. Therefore, the restriction

map Fv⊴e describes how a node opinion publicly manifests in such a discourse space.

Furthermore, the space of 0-cochain is formed by all private opinions, and the space of

1-cochain is formed by all discourse spaces. Since the co-boundary map δ maps between

the two co-chains, it measures the disagreement between all the nodes.

3.2 Sheaf Laplacian

We can construct the sheaf Laplacian using the co-boundary map δ. The sheaf Laplacian

operator for a given cellular sheaf measures the aggregated “disagreement of opinions” at

each node. Formally, it can be defined as:

Definition 6 (Sheaf Laplacian) Given a cellular sheaf (G;F), the sheaf Laplacian is

a linear map LF : C0(G,F) → C0(G,F). It can be constructed using the co-boundary

maps LF = δ⊤δ, or defined node-wise LF(x)v =
∑

v,u⊴e(Fv⊴exv −Fu⊴exu).

Given a graph G with n nodes, assuming all stalks have a fixed dimension d, the sheaf

Laplacian is an nd × nd positive semi-definite block matrix. It has diagonal blocks
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LFvv =
∑

v⊴eF⊤
v⊴eFv⊴e, and non-diagonal blocks LFvu = −F⊤

v⊴eFu⊴e. The normalised

sheaf Laplacian becomes ∆F := D−1/2LFD
−1/2, where D is the block-diagonal of LF .

Figure 3.2: The graph Laplacian matrix (b) and the sheaf Laplacian matrix (c) for a given
graph as illustrated in (a).

Sheaf Laplacian generalises graph Laplacian The graph Laplacian is defined as

L = D−A, where D is the degree matrix and A is the adjacency matrix of the graph. In

a similar fashion as we define sheaf Laplacian using co-boundary maps, we can construct

graph Laplacian using the incidence matrix.

Definition 7 (Incidence matrx) Given an arbitrary choice of orientation of an edge

e = u→ v, the incidence matrix B is defined as:

Bxe =


1, if x = u

−1, if x = v

0, otherwise

(3.1)

The graph Laplacian can then be constructed by L = B⊤B. Unlike how the co-boundary

map (Definition 5) uses the node data xv, the incidence matrix is built purely on adjacency

information (whether and how a node x belongs to a arbitrarily directed edge e). In fact,

the graph Laplacian is a trivial sheaf, where all the stalks are set to scalars (d = 1,

where d is the stalk dimension) and the restriction maps are identity functions. The sheaf

Laplacian generalises the graph Laplacian by allowing a higher dimension (d ≥ 1). This

gives a sheaf the potential to encode richer information, such as the semantic knowledge

of the node data. Furthermore, the sheaf Laplacian may capture more general node

relationships as the stalk dimension increases.

3.3 Sheaf theory in GNNs

Prior works [55, 54, 56] focused on analysing the underlying geometry of the graph using

sheaf theory, giving rise to Sheaf Neural Networks [55]. In [55, 54], they model the
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convolution of GNNs as a heat diffusion process which implicitly uses the graph Laplacian,

and generalise the diffusion to operate over a cellular sheaf. Since our project focuses on a

different domain, we leave the detailed description of Sheaf Neural Networks in Appendix

A. Here, we provide a high-level intuition behind this idea. Given a node representation

matrix H ∈ Rn×dh , a Graph Convolution Network [1] updates the node features via:

Hl+1 = σ((I−∆0)HlW) (3.2)

where l is the layer number, ∆0 is the normalised graph Laplacian, I is the identity matrix,

and W is the weight matrix with σ as a non-linear activation function. This equation

comes from the Euler discretisation of a heat diffusion process to model the convolution

operator of GNNs.

Sheaf Neural Networks replace the graph Laplacian ∆0 in Equation A.2 with the sheaf

Laplacian ∆F , leading to a sheaf diffusion process. The sheaf Laplacian is more gen-

eral than the graph Laplacian as explained in Section 3.2, encoding a richer relational

structure of the graph. Empirically, these works [55, 54, 56] show that a sheaf diffusion

process improves the performance of GNNs, especially on heterophilic graphs. While [55]

hand-crafts the sheaf, [54] proposes a pipeline to learn the sheaf directly from the data.

Following up, [56] provides an alternative method to pre-compute the sheaf by analogy

to parallel transport on a manifold, avoiding the numerical issues from gradient-based

learning.

Our project applies the sheaf theory to a different domain. Unlike Sheaf Neural Networks,

we do not modify the GNN architecture. Instead, we construct positional encodings

using the sheaf to encode the graph structure. We aim to further motivate the paradigm

shift in the current perspective on spectral GNNs, which was primarily built upon the

graph Laplacian. Furthermore, our project also contributes to designing novel GNN

techniques using concepts from geometry and topology, inspiring more investigation in

this interconnected area.
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Chapter 4

Implementation

The framework in Figure 4.1 outlines the implementation details elaborated in this chap-

ter. We first describe the construction of Laplacian-based PEs, using the graph Laplacian

as an example (Section 4.1). Next, we explain our sheaf-based PEs using a pre-computed

sheaf (Section 4.2) and a learnt sheaf (Section 4.3). Finally, we address the sign invariance

problem associated with eigendecomposition (Section 4.4).

Figure 4.1: The framework of our implementation. Given an input graph, we construct the
graph/sheaf Laplacian matrix and take the k eigenvectors with the smallest eigenvalues
as PEs. The PEs are concatenated to the node feature matrix as inputs to the GNN.
This chapter focuses on explaining the three PE construction methods (using the graph
Laplacian, the pre-computed sheaf Laplacian, and the learnt sheaf Laplacian).

4.1 Laplacian-based PEs

Our proposal using the sheaf Laplacian extends the graph Laplacian, both constructing

PEs with the Laplacian matrix. The graph Laplacian PEs are also used as the baseline for

evaluation. We first motivate using Laplacian eigenvectors to capture global structural

information of the graph, and then explain how they are implemented as PEs in practice.

The Laplacian eigenvectors have been employed in unsupervised manifold learning [11].
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The spectral decomposition of the Laplacian matrix computes a low-dimensional embed-

ding of the data on a manifold. More importantly, such an embedding optimally preserves

the graph structure. The Laplacian matrix is also widely used in graph signal processing

[57] and spectral GNNs [58]. These desirable properties make the Laplacian matrix an

excellent candidate for constructing PEs [12, 13, 47].

Graph Laplacian Let us take the graph Laplacian L to illustrate the idea. The graph

Laplacian can be computed via:

L = D−A (4.1)

where D is the degree matrix and A is the adjacency matrix of the graph. We compute

the eigendecomposition of the graph Laplacian:

L = UTΛU (4.2)

Here, Λ denotes the n eigenvalues and U denotes the n×n eigenvector matrix for a graph

with n nodes. Such factorisation of the graph Laplacian forms a meaningful local coordi-

nate system which respects the graph structure. Therefore, we can use the eigenvectors

as PEs to provide unique representations for the graph nodes.

As illustrated in Figure 4.1, we stack input node features as a matrix X ∈ Rn×dx , where

n is the number of nodes and dx is the feature dimension. To append PEs to each

node, we take the eigenvectors corresponding to the smallest k eigenvalues from U, and

concatenate them with X. This results in a new feature matrix X′ ∈ Rn×(dx+k), which are

then fed into the GNN. The advantage of such an approach is that PEs can be computed

at preprocessing time. Furthermore, it is computationally efficient. The complexity for

complete factorisation is O(E3/2). If an approximation method such as the Nystrom

method [59] is used, the complexity reduces to O(n).

4.2 Pre-computed connection Laplacian

The graph Laplacian only encodes the graph structure, irrespective of the node features.

As explained in Chapter 3, the sheaf Laplacian generalises the graph Laplacian with an

additional parameterisation from the node data, which gives it the potential to construct

more expressive PEs. This section elaborates on our method to construct sheaf-based

PEs by pre-computing the connection Laplacian [53, 56].

4.2.1 Manifold assumption

The method is built upon the manifold assumption, stating that although data points live

in a high-dimensional ambient space Rp, they can be embedded onto a low-dimensional
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Riemannian manifold Mq, where q ≪ p. The key objective of such embedding is to

capture the geometric and topological structure of the high-dimensional data.

Figure 4.2: An illustration of a Riemannian manifold.

As shown in Figure 4.2, a Riemannian manifold M generalises Euclidean geometry such

that the surfaces are not necessarily flat. Each point on the manifold x ∈ M is associated

with a tangent space TxM, which is a Euclidean space. A tangent space is a vector space

that contains all possible tangential directions passing through the point x. Intuitively, it

generalises the notion of tangent lines for curves from two dimensions to higher dimensions.

Next, parallel transport denotes a mechanism of transporting points on a manifold along

smooth curves, generalising the notion of translation in Euclidean space.

4.2.2 Analogy between sheaf and parallel transport

Based on the manifold assumption, we can compute the sheaf Laplacian by an analogy

to the parallel transport on a manifold. This is because when we constrain the restriction

maps to be an orthogonal matrix, we obtain a special form of the sheaf Laplacian, called

the connection Laplacian [53]. A connection Laplacian can be seen as a discretised version

of the vector bundle, which is an object from differential geometry that associates a vector

space to each point on a manifold, similar to how sheaf attaches vector spaces (stalks) to

nodes and edges. Therefore, we can observe the link between the connection Laplacian

and a manifold. While the restriction maps Fv⊴e describe how vectors are transported

between stalks for a sheaf, parallel transport is a way to transport vectors on a manifold.

Figure 4.3: Analogy between transport on a sheaf and parallel transport on a manifold.

As illustrated in Figure 4.3, we define the notion of transport for a sheaf Pγ
v→u : F(v) →

F(u) from the stalk F(v) to the stalk F(u) by composing restriction maps along the

edges:
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Pγ
v→u = (F⊤

u⊴el
Fvl⊴el)...(F⊤

v1⊴e1
Fv⊴e1) (4.3)

where v, u ∈ V are two nodes in the graph, and γv→u = (v, v1, ..., vl, u) denotes the

sequence of nodes in the path from v to u.

We can then compute a connection Laplacian using the parallel transport on the manifold.

For two nodes v and u, its transport maps Pγ
v→u from F(v) to F(u) corresponds to the

parallel transport from TxvM to TxuM, where xv and xu are the associated node data.

When v and u are connected by an edge e, we derive from Equation 4.3 that the transport

P = Pγ
v→u = F⊤

u⊴eFv⊴e. As explained in Section 3.2, we can now compute the non-

diagonal blocks of the sheaf Laplacian using LFvu = −F⊤
v⊴eFu⊴e. Furthermore, since the

connection Laplacian is an orthogonal matrix satisfying LFL
⊤
F = I, we can compute the

diagonal blocks by taking the degree of the nodes LFvv = degree(v). In this way, we fill up

all the entries in the connection Laplacian matrix. We then follow the same procedure as

described in Section 4.1, where we take the first k eigenvectors of the connection Laplacian

as PEs followed by a reshape to concatenate them with the node feature matrix.

4.2.3 Compute parallel transport on the manifold

The last question is how we compute the parallel transport from TxvM to TxuM on the

manifold M in the context of graph data. In [56], they propose a method to pre-compute

this transport for Sheaf Neural Networks [55]. Here, we explore its application to construct

sheaf-based PEs.

Figure 4.4: Step 1: We construct the orthonormal bases of TxvM and TxuM using local
PCA, defined by the 1-hop neighbourhood of the nodes. Step 2: We compute the orthog-
onal mapping Ovu by optimal aligning the two bases, which approximates the parallel
transport operator [53].

The two-step procedure is summarised in Figure 4.4. Here, we elaborate the steps in more

details. First, we construct the orthonormal bases of the tangent spaces TxvM for each

data point xv via local Principle Component Analysis (PCA). The local neighbourhood

is defined by the 1-hop neighbourhood N (v) of the node v, giving us a p× |N (v)| matrix

X̂v = [xv − xv, ...,xv|N (v)| − xv]. We perform PCA via Singular Value Decomposition

(SVD) on the matrix X̂v = Uv

∑
iV

⊤
v . The stalk dimension d is set as a hyperparameter,
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which is also the dimension of the orthonormal bases. Therefore, we take the first d left

singular vectors of Uv. This forms a d-dimensional subspace of Rp, calling it Ov. We take

Ov as an approximation for the basis of the tangent space TxvM.

Next, we compute the parallel transport via optimal alignment between the tangent spaces

TxvM and TxuM. Intuitively, an optimal alignment is a mapping from one tangent space

to another. Formally, we compute Ovu = UV⊤, where U and V comes from the SVD

of O⊤
v Ou = U

∑
V⊤. If xv and xu are close enough, then Oij approximates the parallel

transport between their tangent spaces as proved in [53]. This condition is ensured by

taking the 1-hop neighbourhood as explained in the last paragraph. Note when there are

fewer than d neighbours for node v, we take the nearest nodes according to the Euclidean

distances of their node data.

4.2.4 Learnable pre-computed PEs

The pre-computed connection Laplacian is computationally favourable. However, not

all input node features are informative enough to construct it. For example, some

datasets only provide scalar node features, challenging the manifold assumption where

high-dimensional data is expected.

To tackle this problem, we allow the PEs to evolve after initialising them with the pre-

computed sheaf. Learnable structural and positional encodings (LSPE) was explored in

[47], but they only applied the technique to the graph Laplacian and random walk ma-

trix. We investigate this mechanism under the sheaf Laplacian context. Furthermore,

the motivation is different. Firstly, we complement the pre-computed connection Lapla-

cian PEs with an evolvable structure to address the issue when the manifold assumption

does not hold. Secondly, the underlying sheaf also evolves as node representations get

updated after each layer. Therefore, our pre-computed connection Laplacian PEs may

enjoy additional benefits from learning.

At initialisation, for each node v ∈ V , we embed the pre-computed sheaf-based PEs into

the same dimension as the node features:

h0
v = xv (4.4)

p0
v = MLP(pConnLap

v ) (4.5)

where hv is the node representation, xv is the input node feature, pv is its PE, and

pConnLap
v is the initialised PE with the connection Laplacian. During training, we update

both node and positional representations:

hl+1
v = fh([h

l
v||pl

v], {[hl
u||pl

u]}u∈N (v)) (4.6)

pl+1
v = fp(p

l
v, {pl

u}u∈N (v)) (4.7)
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where l is the layer number, || denotes concatenation, fh is the update function for node

representations depending on the GNN layer used, and fp swaps the activation function

in fh to tanh to accommodate both positive and negative values in positional coordinates.

4.3 Learnt sheaf Laplacian

However, the pre-computed connection Laplacian may not be general enough to capture

the underlying sheaf of the graph truthfully. Furthermore, the learning mechanism we

augmented to let it evolve is not using the sheaf structure as signals. Hence, we now

consider a method to learn the sheaf directly from the data, in order to construct more

general PEs to better suit the graph. In [54], they propose an end-to-end model to learn

a sheaf diffusion process for GNNs. We adopt their framework by learning the restriction

maps with a parametric function, and apply it to construct sheaf-based PEs.

Figure 4.5: (a) We use a parametric function Φ(xv,xu) to learn the restriction maps. (b)
We then construct the sheaf Laplacian by filling up diagonal and non-diagonal blocks.
Different types of sheaf can be learnt depending on the type of function Φ.

4.3.1 Learning the restriction maps

As shown in Figure 4.5, the restriction maps Fv⊴e : F(v) → F(e) are linear maps between

the stalks associated with node v and edge e, where v and e is an incident node-edge pair.

The restriction map Fv⊴e is a d×d matrix, where d is a tunable hyperparameter denoting

the dimension of the stalks. The idea is to approximate the restriction map using a

learnable parametric function Φ : Rd×2 → Rd×d:

Fv⊴e:=(v,u) = Φ(xv,xu) (4.8)

where xv and xu are the node features of nodes v and u. Since the restriction maps denote

the consistency constraints of the data as explained in Section 3.1, we feed in the node
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features to learn these maps.

In practice, the parametric function Φ is implemented as an MLP that takes the concate-

nation of two node features as the input. The output is then reshaped to fit the size of

the restriction maps:

Φ(xv,xu) = σ(W[xv||xu] + b) (4.9)

where || denotes matrix concatenation, W is the weight matrix for the MLP with an

optional bias b, and σ is a non-linear activation function. In [54], they show that if Φ has

enough capacity and the features are diverse enough, it would allow us to learn any type

of sheaf over a graph.

4.3.2 Types of sheaf learnt

Depending on the type of function Φ, we learn a sheaf Laplacian with a corresponding

matrix type. These sheaf types come with different trade-offs, and we will empirically

analyse their effects when constructing sheaf-based PEs.

Diagonal The sheaf Laplacian with diagonal blocks is the most data efficient due to

the fewer parameters to learn. It is also computationally cheaper if we perform sparse

matrix multiplications. However, its generality to capture different sheaves is also limited

due to the small number of parameters.

Orthogonal Following [54], we build the orthogonal matrix using the Householder re-

flections [60]. This type of sheaf is the same as the connection sheaf explained in Section

4.2. It uses more parameters than the diagonal matrix, but still fewer than a general

sheaf due to the orthogonality constraint. Furthermore, because of the analogy to parallel

transport on a manifold, the connection Laplacian provides better understood geometric

properties to interpret.

General Learning a general sheaf puts no constraint on the matrix learnt, and is hence

most flexible to represent any possible sheaf of the graph. However, a large number of

parameters puts it at the risk of overfitting, making such type of a sheaf harder to train.

4.3.3 Eigendecomposition during training

The difficulty of constructing PEs using learnt sheaf also lies in the eigendecomposi-

tion during training. Unlike the pre-computed PEs, we can no longer use both time- and

memory-efficient eigensolvers, such as scipy.linalg.eigsh, which do not allow gradient-

based learning. Furthermore, the LAPACK routine used by common differentiable eigen-

solvers, such as torch.linalg.eigsh, are numerically unstable. In degenerate cases
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where repeated eigenvalues are present, the eigensolver produces an infinite gradient.

One mitigation technique is introducing a small amount of random perturbation to the

(diagonal of) Laplacian matrix, hopefully producing unique eigenvalues. However, this

technique adds imprecision and requires non-trivial handling to decide the perturbation

magnitude. Our initial experiments show that the performance was significantly affected

when perturbation was added.

To alleviate the problem, we use a more advanced algorithm provided by xitorch [61]. We

use xitorch.linalg.symeig, which performs partial eigendecomposition on the smallest

k pairs of eigenvalues and eigenvectors with explicit handling on degenerate cases [62].

The algorithm splits the eigenvectors into three components to find parallel, orthogonal,

and degenerate parts separately. Moreover, for large-scale sparse matrices, we use the

Davidson algorithm [63] implemented by the eigensolver to boost the memory efficiency.

4.4 Sign invariance

The role of symmetry is critical in machine learning to reduce the problem space and

improve data efficiency. If a model can capture the underlying symmetry of the problem,

then it can better generalise to unseen data after learning those in the same symmetry

group. There are nontrivial symmetries in our sheaf-based PEs. When we perform eigen-

decomposition from the sheaf Laplacian, there is a sign ambiguity problem due to how

eigenvectors come in pairs. If v is an eigenvector, then −v is also valid. If we normalise

the Laplacian matrix, it requires the model to learn all 2k sign possibilities, where k

is the number of eigenvectors used as PEs. Without normalisation, there will be more

ambiguities. Ideally, we want a function f that is sign-invariant:

f(v1, . . . ,vk) = f(s1v1, . . . , skvk), where si ∈ {−1, 1} for i ∈ {1, . . . , k} (4.10)

Therefore, we randomly flip the signs of the eigenvectors during training. This is equiv-

alent to a random uniform sampling from all the 2k sign possibilities. Since this is an

approximation to sign invariance, the choice of k needs to be kept small (k ≪ n, where n is

the number of nodes). Furthermore, it must also be small enough to accommodate small

graphs. Nonetheless, random flipping is necessary for the expressive power of Laplacian-

based PEs. In [12], they compared random flipping with taking the absolute values of the

eigenvectors, and empirically showed the importance of sign invariance for such PEs.

4.5 Summary

In summary, we explain the implementation of three types of PEs, which are the subjects

to evaluate in the following chapters.
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• GraphLap: PEs constructed with the graph Laplacian during preprocessing. It

will be the baseline to evaluate our sheaf-based PEs.

• ConnLap: PEs constructed with the connection Laplacian during preprocessing.

The connection Laplacian is a sheaf Laplacian with an orthogonal matrix. We

augment it with an optional learning mechanism to tackle the problem caused by

less informative node data.

• SheafLap: PEs constructed with a learnt sheaf Laplacian from the node data.

We implement three types of matrices associated with the sheaf and discuss the

differentiable eigendecomposition method used.
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Chapter 5

Evaluation

The goal of evaluation is to test whether our proposed sheaf-based PEs improve the

expressive power of GNNs and Graph Transformers. We present our experimental results

for node-level tasks (Section 5.1) and graph-level tasks (Section 5.2). This is followed by

a qualitiative analysis (Section 5.3) and complexity evaluation (Section 5.4). Our main

questions are:

1. Can sheaf-based PEs outperform the graph Laplacian PEs in producing differen-

tiable node embeddings as required by node-level tasks?

2. Can they distinguish more non-isomorphic graphs in graph-level tasks?

3. Are they effective across models, including Graph Transformers?

4. What are the trade-offs between the pre-computed sheaf and the learnt sheaf when

constructing sheaf-based PEs?

5.1 Node-level Tasks

Node-level tasks require the model to learn appropriate node representations. However,

the message-passing mechanism makes it difficult to differentiate nodes with similar local

structures. An ideal positional encoding should not only provide necessary global infor-

mation of the nodes, but also handle the intricate relationships between them, such as

heterophily.

Datasets We use the same set of real-world datasets following [64, 54, 56], covering cita-

tion networks [65, 66] (Cora, Citeseer, Pubmed), webpages [67] (Cornell, Texas, Wiscon-

sin), actor co-occurrence networks [68] (Film), and Wikipedia networks [69] (Chameleon,

Squirrel). Each of these datasets consists of a single graph. For example, in the Cora

dataset, nodes are academic pages with edges representing citation relationships. The goal

is to learn appropriate node representations to correctly classify the nodes, such as their
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academic topics in the Cora dataset. We append a detailed description for each dataset

in Appendix B. This set of datasets contains graphs with varying sizes and densities, as

shown in Table 5.1. Furthermore, the graphs are ranked in increasing order of homophily

level. A higher homophily level indicates that connected nodes are more likely to have

similar features.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora

#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278

#Classess 5 5 5 5 5 5 7 3 6

Table 5.1: Graph statistics for the datasets used in node-level tasks, in the increasing
order of homophily level.

Setup We use the 10 fixed splits provided by [70], each containing 48%/32%/20% of

nodes per class for training, validation, and testing, respectively. We follow the same

hyperparameter settings in [54] for each dataset. For our model-specific parameters, we

use the 8 smallest eigenvectors as PEs, and a dimension d = 3 for the stalks in the sheaf.

We use GCN as the base model, due to its well-known inability to deal with heterophilic

graphs. The reported results are the mean and standard deviation of accuracy (%) across

the 10 folds.

5.1.1 Laplacian-based PEs

Texas Wisconsin Cornell
#Nodes 183 251 183
#Edges 295 466 280

No PE 57.30±5.51 49.80±6.80 45.95±6.84
GraphLap 58.22±7.03 55.49±12.46 51.35±7.15

ConnLap 58.38±7.76 57.65±6.63 52.97±7.37
SheafLap(diag) 61.35±6.63 54.90±9.80 44.32±7.17
SheafLap(orth) 61.08±6.19 54.51±7.22 48.38±5.05
SheafLap(gen) 60.81±7.07 57.65±5.24 45.68±6.56

Table 5.2: Mean±std accuracy (%) for node-level tasks with smaller graphs across 10
folds using different types of positional encodings. The best and the second best results
are highlighted in red and blue, respectively.

Effectiveness of PEs As shown in Table 5.2, the use of PEs (GraphLap, ConnLap,

SheafLap) improves performance over vanilla GCN (NoPE) in all three datasets. While

previous works [12, 47] focused on evaluating graph-level tasks, we also demonstrate the

effectiveness of such types of PEs on node-level tasks. Furthermore, the graphs in these

datasets are very sparse, exacerbating the locality problem in message-passing. Hence,

the global structural knowledge from the Laplacian spectrum is helpful to improve the
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expressivity of GNNs in identifying substructures. The performance gain is notable even

with the simplest Laplacian (GraphLap).

Sheaf-based PEs outperform GraphLap We also observe that sheaf-based PEs

(ConnLap, SheafLap) achieve better performances than the graph Laplacian (GraphLap)

in most cases. Furthermore, ConnLap outperforms GraphLap in all tasks, while SheafLap

obtains the best results in two datasets except in Cornell, which we will discuss later.

The improvement aligns with our motivation that the sheaf Laplacian can additionally

incorporate node data to provide a more expressive embedding space, compared to how the

graph Laplacian only uses adjacency information. Furthermore, all variants of SheafLap

uniformly achieve outstanding results in Texas, which is the most heterophilic dataset

here. This suggests that PEs constructed from the sheaf Laplacian can better capture

such complex relationships between the nodes, giving rise to more expressive PEs.

5.1.2 Pre-computed connection Laplacian as PEs

In Table 5.2, compared to the learnt sheaf Laplacian (SheafLap), ConnLap is more stable

across datasets. This can be explained by the rich information the node features provide,

where the feature dimension is high (larger than 1000). Therefore, the manifold assump-

tion can hold in these datasets, where high-dimensional data live on a low-dimensional

manifold. In addition, the pre-computed ConnLap also avoids the numerical issues which

learnt SheafLap suffers during backpropagation, contributing to its better stability. An-

other possibility is that these graphs are relatively small, so the amount of data may not

be sufficient for the learnt sheaf to be properly trained.

5.1.3 Learnt sheaf Laplacian as PEs

The performance of SheafLap is even worse than not using PEs in the Cornell dataset, as

shown in Table 5.1. One possibility is related to the numerical instability from differen-

tiable eigensolver discussed in Section 4.3.3, which can impair the PE quality significantly

when the Laplacian matrix is not well-conditioned. There are also other factors that may

influence the performance of SheafLap, which we provide a deeper analysis of them in the

following experiments.

Effect of sheaf type We compare different types of learnt sheaf Laplacian: diagonal

(diag), orthogonal (orth), and general (gen), as described in Section 4.3.2. In Table 5.2,

we observe that sheaf type can have very different effects on different datasets. In Cornell,

the performance difference is as significant as 4.06%. We cannot conclude which sheaf

type is the best, as each type obtains the best result in one of the three datasets. While

a diagonal matrix has the fewest parameters to train, a general sheaf is more flexible to

capture different types of sheaf. Therefore, we choose to use sheaf with an orthogonal
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matrix for the rest of experiments, balancing the trade-off between computational cost

and generality among the three matrices.

SheafLap
Texas Wisconsin Cornell

norm unnorm norm unnorm norm unnorm

Diagonal 60.54±6.53 61.35±6.63 54.14±7.62 54.90±9.80 44.86±4.55 44.32±7.17
Orthogonal 59.19±6.89 61.08±6.19 54.49±7.44 54.51±7.22 46.49±5.90 48.38±5.05
General 59.02±7.34 60.81±7.07 55.89±6.81 57.65±5.24 45.26±4.31 45.68±6.56

Table 5.3: Mean±std accuracy (%) for node-level tasks comparing learnt sheaf PEs with
normalised and unnormalised sheaf Laplacian. The winning case in each setup is high-
lighted in red.

Effect of normalisation We also compare the normalised and unnormalised sheaf

Laplacian for constructing PEs using the learnt method (SheafLap). In Table 5.3, we

observe that, except for one case, the unnormalised sheaf Laplacian proves to be a better

candidate. The normalisation Laplacian matrix can reduce the number of sign possi-

bilities, as discussed in Section 4.4. Our results suggest that, in the case of the sheaf

Laplacian, the benefit of normalisation to alleviate the sign ambiguity problem may not

outweigh the expressive power of the unnormalised Laplacian in effectively differentiating

nodes.

Figure 5.1: Accuracy (%) against number of eigenvectors used as PEs for ConnLap and
SheafLap with an orthogonal matrix.

Number of eigenvectors Figure 5.1 presents our evaluation of the number of eigen-

vectors used as PEs. We can see that using more eigenvectors improves the performance

until a turning point is reached, beyond which the accuracy deteriorates. This finding

aligns with our claim regarding the sign ambiguity discussed in Section 4.4, that utilising

more eigenvectors results in more sign possibilities and exacerbates the sign ambiguity

problem. However, it is also crucial for nodes to have an adequate number of eigenvectors

to obtain sufficient positional information. For example, in Wisconsin, 16 eigenvectors are

needed to achieve the optimal performance for both ConnLap and SheafLap. Therefore,

the choice of the number of eigenvectors is critical. Furthermore, we note that this trend

is not observed in the Cornell dataset, suggesting that Laplacian-based PEs may not be
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well suited for this graph. This finding helps explain the poor performance of SheafLap

in Table 5.2.

5.1.3.1 Scalability

Film Squirrel Chameleon Citeseer Pubmed Cora
#Nodes 7,600 5,201 2,277 3,327 18,717 2,708
#Edges 26,752 198,493 31,421 4,676 44,327 5,278

No PE 25.20±0.69 46.62±3.62 63.97±3.10 72.34±1.41 86.43±0.35 84.71±1.23
GraphLap 25.13±0.99 47.56±3.03 64.28±3.00 73.83±2.07 86.43±0.36 85.05±1.47

ConnLap 26.53±0.86 47.92±3.53 65.57±2.52 73.88±1.84 86.49±0.42 85.13±1.34
SheafLap 23.80±1.10 51.11±2.95 65.20±3.10 74.35±1.64 85.84±0.65 85.88±1.26

Table 5.4: Mean±std accuracy for node-level tasks with larger graphs across 10 folds
using different types of positional encodings. The best and the second best results are
highlighted in red and blue, respectively.

We then evaluate sheaf-based PEs on other node-level tasks to test their scalability to

larger sizes and adaptability to different densities. Since the graphs are much larger

than those in Table 5.2, the computational costs are much higher, especially for sheaf

learning. We choose to use SheafLap with an orthogonal matrix for the experiments here.

This is because orthogonal sheaf balances the trade-off between generality and efficiency.

Furthermore, it is the same type of sheaf used in ConnLap, providing a fairer comparison.

In Table 5.4, we observe that sheaf-based PEs (ConnLap, SheafLap) continue to out-

perform GraphLap, maintaining the top two best results in most datasets. This further

indicates the effectiveness of our sheaf-based PEs, even on much larger datasets. Further-

more, these graphs cover different densities. While sparse graphs suffer more from locality,

dense graphs may lead to similar neighbourhoods. Both sheaf-based PEs cope well with

sparse graphs (such as Citeseer) and dense graphs (such as Squirrel). Within sheaf-based

PEs, we can see SheafLap obtains higher gains in those where it wins. In these larger

graphs, SheafLap is more likely to receive sufficient data to be properly trained, which

may explain its outstanding performance. We also note that ConnLap remains more

stable than SheafLap, due to its numerical stability by avoiding gradient-based learning.

5.2 Graph-level tasks

Graph-level tasks require mapping graphs to proper graph embeddings, which should be

different for non-isomorphic graphs and identical for isomorphic ones. A graph embedding

is usually computed via aggregating all node embeddings through operations such as sum

or mean. Hence, PEs should capture appropriate positions of the nodes in the whole

graph. This also requires higher-level coordination of these PEs compared to node-level

tasks.
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Datasets We use two sets of real-world molecular graphs (ZINC [71] and OGBG-

MOLTOX21 [72]) for graph-level predictions. The ZINC dataset is a graph regression

task to predict the constrained solubility (logP) value of each molecule. The node and

edge features are provided as scalars, representing the atom or bond types. The OGBG-

MOLTOX21 dataset requires classifying the molecules to a binary label, where the node

features are 9-dimensional vectors. Appendix B provides a more detailed description for

each dataset.

Setup For the ZINC dataset, we use the predefined 10K/1K/1K splits for training,

validation, and testing, respectively. For the OGBG-MOLTOX21 dataset, we adopt the

default splits by Open Benchmark Dataset [72] based on scaffolding splitting [73]. The

hyperparameter setup follows [47], where GatedGCN, PNA, and SAN are used as base

models. We select the 8 smallest eigenvectors as PEs, and a dimension d = 3 for the

stalks in the sheaf. The reported results are the mean and standard deviation of metrics

across 4 runs using different random seeds.

Evaluation metrics The two datasets use different evaluation metrics. ZINC is a graph

regression task, which uses the Mean Absolute Error (MAE) to quantify the magnitude of

errors. Therefore, the objective is to minimise the MAE. Conversely, OGBG-MOLTOX21

is a graph classification task, where Area Under the Curve (AUC) is used to measure

the probability of predicting a positive example over a negative example. In this task, a

higher AUC is desired.

5.2.1 Pre-computed connection Laplacian as PEs

For graph-level tasks, each dataset contains multiple graphs, posing a challenge for sheaf

learning. During training, these graphs are fed into the model in batches. Due to the

size differences in batched graphs, they are processed as a single large graph with dis-

connected smaller subgraphs. This requires us to “unbatch” the graphs to compute the

learnt sheaf Laplacian for each graph during training, incurring an extraordinary cost. In

contrast, the advantage of the connection Laplacian avoids the multi-graph problem by

pre-computation before batching. Due to this constraint, we focus on ConnLap to test

sheaf-based PEs for graph-level tasks. We leave the efficient treatment of multi-graphs in

sheaf learning for future work.

In Table 5.5, we observe that not using PE (No PE) again results in the worst performance

in both datasets, demonstrating the effectiveness of Laplacian-based PEs. Furthermore,

ConnLap achieves the best result (77.9) compared to GraphLap (77.4) in MOLTOX21.

This shows that the sheaf Laplacian, by accounting for node data in addition to the graph

structure, can provide more informative PEs also in the global scope. However, in ZINC,

we also note that ConnLap only achieves a marginal improvement (0.249) over No PE

(0.251), whereas GraphLap has an outstanding performance (0.202). The possible reason
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Base Model
ZINC ZINC+LSPE MOLTOX21

TestMAE (↓) TestMAE (↓) TestAUC (↑)

GatedGCN
No PE 0.251±0.009 N.A. 77.2±0.6

GraphLap 0.202±0.006 0.196±0.008 77.4±0.7
ConnLap 0.249±0.005 0.193±0.014 77.9±0.2

Table 5.5: Mean±std MAE (lower is better) for ZINC and mean±std AUC (%, higher is
better) for OGBG-MOLTOX21 across 4 random seeds using different types of positional
encodings. The best result is highlighted in red.

for this is that the node features in ZINC are merely scalar values, indicating the index

of the atom type. Such sparse information is inadequate for constructing the connection

Laplacian through the manifold method. To tackle this problem, we take the one-hot

encodings of these scalars to obtain feature vectors. However, such one-hot embeddings

may not be meaningful enough to fulfil the manifold assumption. On the other hand,

node features in MOLTOX21 have 9 dimensions and are not blocked by this problem.

5.2.2 Learnable positional encodings

We allow the pre-computed ConnLap to evolve with training as explained in Section

4.2.4 to address the issue when the manifold assumption does not hold. We also compare

GraphLap augmented with such a learnable mechanism for a fair comparison. The results

are shown in the “ZINC+LSPE” column in Table 5.5. While GraphLap benefits slightly

from such change (0.202 to 0.196), ConnLap gains significantly from learning (0.249 to

0.193). This observation aligns with our hypothesis. While the scalar node features are

not rich enough to construct ConnLap during the preprocessing time, the sheaf structure

sets a good starting point to let ConnLap evolve. Furthermore, as node representations

become more meaningful across layers, the connection Laplacian can encode better global

positions from the improved node features.

5.2.3 Different architectures

GatedGCN PNA SAN

No PE 77.2±0.6 75.5±0.8 74.4±0.7
GraphLap 77.4±0.7 75.2±1.3 73.6±0.3
ConnLap 77.9±0.2 75.3±0.4 74.5±0.4

Table 5.6: Mean±std AUC for MOLTOX21 across 4 random seeds using different base
models. The best result is highlighted in red.

Our sheaf-based PEs are model-agnostic. PEs are also essential to complement Graph

Transformers with the input graph structure. In Table 5.6, we compare GraphLap and

ConnLap across two GNN models (GatedGCN and PNA) and one Graph Transformer

model (SAN). The model choices follow previous works on the graph Laplacian PEs [47,
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45]. As discussed above, ConnLap has the best performance with GatedGCN (77.9)

compared to GraphLap (77.4) and No PE (77.2). However, both PEs (75.2 and 75.3) do

not match the vanilla PNA architecture. This suggests that Laplacian-based PEs may not

be suitable for PNA, which increases the expressivity by combining multiple aggregators.

One possible reason is that PNA does not follow the WL-test hierarchy [7, 21], so global

structural knowledge from the graph may not be adequate to improve its expressivity.

However, we note that ConnLap still outperforms GraphLap in this case and is more

stable with an std of 0.4 versus 1.3. Moving on to SAN, which is a Graph Transformer,

we notice that although GraphLap performs poorly (73.6) compared to No PE (74.4),

Connlap brings a slight improvement (74.5) and higher stability as well (0.4). Overall,

we can still observe the superior quality of ConnLap compared to GraphLap in terms of

accuracy and stability.

5.2.4 Comparison with relative positional encodings

GatedGCN PNA SAN

No PE 77.2±0.6 75.5±0.8 74.4±0.7
RWPE 77.5±0.3 76.1±0.7 74.4±0.8
ConnLap 77.9±0.2 75.3±0.4 74.5±0.4

Table 5.7: Mean±std AUC for MOLTOX21 dataset across 4 random seeds comparing
ConnLap with a relative positional encoding based on random walks (RWPE). The best
result is highlighted in red.

In Table 5.7, we compare ConnLap, being a global PE, with a relative PE based on

random walks (RWPE) [47]. We can see ConnLap maintains the best performance with

GatedGCN (77.9 vs 77.5) and SAN (74.5 vs 74.4), except in the case of PNA (75.3 vs

76.1), in comparison with RWPE. We discussed in the previous section that both global

PEs using the Laplacian matrix tend to perform poorly with PNA. Here, we notice RWPE,

as a relative PE, is more appropriate for this architecture. This supports our claim that

PNA may not benefit from global structural knowledge, but relative distance information

can facilitate its multiple aggregator scheme. Finally, we note that sheaf-based PEs can

be transformed into relative PEs by taking the gradients of eigenvectors. We believe this

leaves ample future avenues to explore.

5.3 Qualitative Evaluation

5.3.1 Synthetic graphs

We visualise the PEs generated from GraphLap and ConnLap by creating two synthetic

graphs representing the chemical compounds decalin and bicyclopentyl. This is a well-

known pair of graphs that are non-isomorphic but hard to distinguish by GNNs [9]. As
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Figure 5.2: Visualisation of PEs created from GraphLap and ConnLap on two 10-node
graphs with decalin and bicyclopentyl structures [9]. These graphs are heterophilic, where
nodes connected may have different node features.

shown in Figure 5.2, we populate the node features with alternating vectors of 0s and

1s to make them heterophilic. The second and third columns display the visualisation

of PEs from GraphLap and ConnLap, respectively, where similar colours indicate similar

PEs. We see that GraphLap tends to generate a smoothly transiting colour scheme

among neighbouring nodes. In contrast, ConnLap can generate dissimilar PEs when node

features differ. For example, in decalin, GraphLap assigns either warm (red) or cold

(blue) colours in each ring, while ConnLap assigns mixed colours. This demonstrates

that ConnLap can effectively account for both structural and semantic information from

the graph, generating a more expressive positional embedding space to facilitate node

differentiation.

5.3.2 OGBG-MOLTOX21

We also take two real-world graphs randomly from the OGBG-MOLTOX21 dataset (index

295 and 399) to visualise the PEs generated by GraphLap and ConnLap. Similar obser-

vation can be made in Figure 5.3, where ConnLap assigns dissimilar colours to nodes

by incorporating their data differences, in contrast to the smooth colour transition seen

with GraphLap. This finding aligns with the better performance of ConnLap as shown in

Table 5.5, suggesting that these PEs initialised by ConnLap can effectively improve the

learning of graph embedding when aggregated from all nodes.
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Figure 5.3: Visualisation of PEs created from GraphLap and ConnLap on 2 random
graphs from OGBG-MOLTOX21 dataset.

5.4 Complexity Evaluation

Texas Citeseer Squirrel
pre-compute per epoch pre-compute per epoch pre-compute per epoch

GraphLap 49.67 6.71 1886.58 4.47 9654.07 41.87
ConnLap 608.32 7.79 8562.46 3.48 72148.34 33.98
SheafLap 0 19.03 0 3139.45 0 31503.36

Table 5.8: Mean execution time in seconds (s) with different types of PEs on node-level
tasks, sorted in increasing size of graph. In each dataset, “pre-compute” displays the total
time cost to construct GraphLap/ConnLap during preprocessing time, and “per epoch”
is the averaged time cost per epoch.

We compare the mean execution time for each type of PE on different datasets, trained on

NVIDIA Tesla T4 GPU. In Table 5.8 and Table 5.9, we observe that the pre-computation

time costs for ConnLap exceed those of GraphLap (around ×10), due to the higher com-

plexity for constructing the sheaf Laplacian than the graph Laplacian. However, this is a

one-off cost per dataset, and the time per epoch remains similar for both PEs. In Table

5.8, SheafLap induces a much higher cost per epoch (around ×1000), which is significantly

costlier considering that each training procedure typically requires hundreds of epochs.

Although SheafLap does not require pre-computation, its high computational cost per

epoch makes it less scalable than GraphLap and ConnLap.

37



ZINC ZINC+LSPE MOLTOX21
pre-compute per epoch per epoch pre-compute per epoch

GraphLap 30.63 15.53 22.81 23.45 4.98
ConnLap 372.72 15.47 23.24 196.52 5.01

Table 5.9: Execution time in seconds (s) with different types of PEs on graph-level tasks,
where ZINC+LSPE indicates allowing PEs to evolve during training.

5.5 Summary

As a summary, our main findings are:

• PEs constructed from the Laplacian matrix help improve the expressivity of vanilla

GNNs and Graph Transformers in both node-level and graph-level tasks.

• Sheaf-based PEs (ConnLap, SheafLap) are more expressive than GraphLap with

the ability to additionally encode the relationships between the node data. This

claim is further supported by qualitative analysis.

• It is critical to choose an appropriate number of eigenvectors to maximise the effec-

tiveness of sheaf-based PEs. Furthermore, an unnormalised sheaf Laplacian is more

suitable to construct PEs.

• ConnLap is more stable and computationally efficient than SheafLap due to the

advantage that it can be pre-computed. However, its quality is limited by whether

the input data fulfils the manifold assumption. This problem can be alleviated by

adding a learning mechanism to allow it to evolve.

• Learnt SheafLap is more general than ConnLap by avoiding the manifold assump-

tion. It can achieve outstanding results in many tasks, but it is harder to train

and may suffer from numerical instability. Its engineering bottleneck in multi-graph

settings also sets a constraint in graph-level tasks.
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Chapter 6

Conclusion

6.1 Accomplishments

Positional encodings serve as effective means of enhancing the expressivity of GNNs and

are essential for complementing Graph Transformers with valuable graph structural in-

formation. In this project, we propose a novel design of PEs using sheaf theory. Our

experiments demonstrate that sheaf-based PEs outperform existing methods based on

the graph Laplacian. We show the importance of semantic information to capture the

complex relationships between the node data, resulting in a more expressive embedding

space to encode the algebraic and topological structure of the graph. Furthermore, we

design two variants of sheaf-based PEs using pre-computed and learnt methods, exploring

their trade-offs between computational complexity and expressive power.

Empirically, in addition to the graph-level tasks, which have been the focus of existing

literature, we also extensively assess PEs on node-level tasks spanning various graph sizes,

densities, and homophily levels. Our results indicate that sheaf-based PEs are particularly

good at node differentiation, exposing the limitation of the graph Laplacian where the

node data is not taken into account.

Furthermore, our work contributes to the application of sheaf theory in graph learning.

While previous works have concentrated on modelling the convolution operator in GNNs

as a sheaf diffusion process, we take a different approach by encoding the graph structure

using a sheaf. Our work further highlights the significance of sheaf theory in GNNs,

prompting a shift in the current focus of spectral GNNs from the graph Laplacian to the

more generalised sheaf Laplacian.

Finally, our work showcases the value of drawing inspiration from geometry and topology

to develop novel techniques for geometric deep learning, which encompasses the study of

GNNs. These mathematical tools have been extensively studied in theory, inviting ample

opportunities to explore their implications in learning geometric data.
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6.2 Future work

We now point out possible future directions that were not explored due to the time and

computation resource constraints of this project.

SheafLap in multi-graph settings As discussed in Section 5.2.1, SheafLap was not

evaluated for graph-level tasks due to its bottleneck in unbatching the graphs. More

engineering effort can be invested in handling the graph batches during sheaf construction

and reducing its computational cost.

Sheaf-based PE loss The learnable mechanism that we allow ConnLap to evolve does

not use any PE-specific loss. In [47], they propose to use a Laplacian eigenvector loss [11]

to align the PE with the graph topology. Therefore, designing a sheaf-based PE loss to

enforce ConnLap to follow the sheaf structure is also worth exploring.

SignNet integration We dealt with the sign ambiguity problem by randomly flipping

the sign of eigenvectors during training. A recent proposal, SignNet [45], learns the sign

invariance explicitly to address this issue. We can integrate SignNet with the sheaf-based

PEs to see if it enhances the performance.

Relative PEs and structural encodings extension Finally, we can extend our sheaf-

based global PEs to relative PEs by taking the gradients of the eigenvectors, and then

compare with other relative PEs such as RWPE [47]. Similarly, sheaf-based PEs can

also be transformed into structural encodings by appending the eigenvalues of the sheaf

Laplacian to the graph embedding. The computation of eigenvalues is numerically stable

during backpropagation, which may offer improvement in graph-level tasks.
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“Principal Neighbourhood Aggregation for Graph Nets”. In: Advances in Neural

Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell,

M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 13260–13271.

[18] Michael Bronstein. Expressive power of graph neural networks and the Weisfeiler-

Lehman test. 2020.

[19] Boris Weisfeiler and Andrei Lehman. “The reduction of a graph to canonical form

and the algebra which appears therein”. In: NTI Series 2(9):12-16 (1968).

[20] Laszlo Babai and Ludik Kucera. “Canonical labelling of graphs in linear average

time”. In: 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

1979, pp. 39–46. doi: 10.1109/SFCS.1979.8.

[21] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural:

Higher-order Graph Neural Networks. 2018. doi: 10.48550/ARXIV.1810.02244.

[22] J.-Y. Cai, M. Furer, and N. Immerman. “An optimal lower bound on the number

of variables for graph identification”. In: 30th Annual Symposium on Foundations

of Computer Science. 1989, pp. 612–617. doi: 10.1109/SFCS.1989.63543.

[23] B. L. Douglas. The Weisfeiler-Lehman Method and Graph Isomorphism Testing.

2011. arXiv: 1101.5211 [math.CO].

[24] Sergei Evdokimov and Ilia Ponomarenko. “Isomorphism of Coloured Graphs with

Slowly Increasing Multiplicity of Jordan Blocks”. In: Combinatorica 19 (Mar. 1999),

pp. 321–333. doi: 10.1007/s004930050059.

[25] Jing Huang and Jie Yang. “Unignn: a unified framework for graph and hypergraph

neural networks”. In: arXiv preprint arXiv:2105.00956 (2021).

[26] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are AllSet: A

Multiset Function Framework for Hypergraph Neural Networks. 2022. arXiv: 2106.

13264 [cs.LG].

42

https://doi.org/10.48550/ARXIV.2003.00982
https://arxiv.org/abs/2106.03893
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1711.07553
https://doi.org/10.1109/SFCS.1979.8
https://doi.org/10.48550/ARXIV.1810.02244
https://doi.org/10.1109/SFCS.1989.63543
https://arxiv.org/abs/1101.5211
https://doi.org/10.1007/s004930050059
https://arxiv.org/abs/2106.13264
https://arxiv.org/abs/2106.13264


[27] Dobrik Georgiev, Marc Brockschmidt, and Miltiadis Allamanis. HEAT: Hyperedge

Attention Networks. 2022. arXiv: 2201.12113 [cs.LG].

[28] Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar,
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Appendix A

Sheaf Neural Networks

We provide an in-depth description of Sheaf Neural Networks. Given X as the node

feature matrix, the operation of GNNs can be understood from the perspective of a heat

diffusion process:

X0 = X, Ẋt = −∆Xt (A.1)

GNNs use the discretised version of such a continuous diffusion process, which implicitly

involves the graph Laplacian. Take Graph Convolutional Network [1] as an example, by

performing Euler discretisation on Equation A.1, its update rule can be represented as:

Xl+1 = σ(D1/2AD−1/2XlW) = σ((I−∆0)XlW) (A.2)

where A is the adjacency matrix, D is the degree matrix, and ∆0 is the normalised graph

Laplacian. Furthermore, W is a weight matrix with σ as a non-linear activation function.

Sheaf Neural Networks The work by [55] generalises such graph diffusion operation

(Equation A.2) from the graph Laplacian (∆0) to the sheaf Laplacian (∆F):

Xl+1 = σ
(
(Ind −∆F)(In ⊗W1)XlW2

)
(A.3)

where W1 is the left weight matrix, W2 is the right weight matrix, and ⊗ is the Kronecker

product. When the sheaf is constant, i.e. ∆F = ∆0, the left weight matrix W1 is a scalar

and the diffusion process becomes Equation A.2.

Since the sheaf Laplacian is able to represent more complex relationships between the

node data, they empirically showed that Sheaf Neural Networks are advantageous over

node data that are non-constant, asymmetric, and varying in dimension. This setting

is commonly understood as heterophilic, where nearby nodes do not share similar node
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features. The superior expressivity of sheaf diffusion is formally proved in [54] using a

hierarchy of more generalised sheaves within the infinite time limit.

Neural sheaf diffusion The method proposed in [55] requires full knowledge of a graph

to construct the sheaf Laplacian, making it difficult to generalise to unseen graphs. A

learning-based approach was proposed in [54], where restriction maps are set as a learnable

parametric function, allowing the sheaf to be learnt from end-to-end. Furthermore, they

propose neural sheaf diffusion that utilises a sheaf with higher-dimensional stalks and a

residual parameterisation:

Xl+1 = Xl − σ
(
∆F(l)(I⊗Wl

1)XlW
l
2

)
(A.4)

where the sheaf ∆F(l) and weight matricesWl
1,W

l
2 evolve at each layer l. This mechanism

ensures that as node representations become more meaningful at each layer, the underlying

sheaf also gets updated to encode the new node data. Empirically, the expressive power

of sheaves is demonstrated in a set of increasingly heterophilic graph datasets.

Connection Laplacian However, the computational cost of sheaf learning can be ex-

pensive when the graph is large. The numerical instability associated with gradient-based

learning for sheaf also poses a challenge. In [56], they propose a way to pre-compute the

sheaf Laplacian with orthogonal maps from the input data in a deterministic manner.

The method assumes that the data comes from a manifold. Then, the sheaf Laplacian

can be computed via optimal alignment of neighbouring tangent spaces through orthogo-

nal transformations. Due to the analogy to parallel transport (connection), such type of

sheaf Laplacian is also called the connection Laplacian. The empirical results showed that

the connection Laplacian maintains the superior expressivity from neural sheaf diffusion,

while greatly reduces computational costs.
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Appendix B

More on datasets

B.1 Node-level tasks

Citation networks (Cora, Citeseer, Pubmed) In these citation networks [65, 66],

nodes are academic papers with edges showing their citation relationships. The node

features are the bag-of-words representation of the papers. The goal is to predict the

academic topic of each paper.

WebKB (Cornell, Texas, Wisconsin) These are webpage datasets [67] collected

from computer science departments in various universities. The nodes are webpages,

while the edges are hyperlinks between them. Similarly, the node features are the bag-of-

words representation, with the goal to classify the category of the webpage.

Actor co-occurrence network (Film) This dataset [68] is a subgraph of the film-

director-actor-writer network, with nodes representing actors and edges denoting co-

occurrence on the same Wikipedia page. The node features consist of keywords in the

Wikipedia page, while the node label corresponds to the actor’s Wikipedia category.

Wikipedia network (Chameleon, Squirrel) The two Wikipedia networks [69] con-

sist of pages related with chameleon or squirrel. The nodes are Wikipedia pages, and the

edges are mutual inks between them. Node features contain information nouns from the

page. The task requires to classify the pages into five categories based on their average

monthly traffic.

B.2 Graph-level tasks

ZINC The ZINC dataset contains 12K molecular graphs representing commercially

available chemical compounds. The molecular graphs vary in size, from 9 to 37 nodes.

Each node or edge is given a number as the feature, representing its atom or bond type.
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In total, there are 28 atom types and 3 bond types. This graph regression task requires

the model to predict a constrained solubility (logP) value of the compound.

OGBG-MOLTOX21 This dataset is a smaller dataset taken from MoleculeNet [73].

The nodes are atoms with 9-dimensional vector features, encoding information such as

atomic number, chirality, and formal charge. The edges represent chemical bonds. It is a

graph-level classification task with binary labels.
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