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Chapter 1

Introduction

This dissertation explores the benefits of endowing classical algorithm subroutines into Deep
Reinforcement Learning agents. It presents Continuous Neural Algorithmic Planners (CNAPs),
extending from a recent proposal by addressing its architectural bottlenecks with novel solutions.
CNAPs expanded the original framework’s application scope from simple discrete control to
complex continuous control tasks. We will see that CNAPs can demonstrate outstanding
performances against a state-of-the-art model across a range of Reinforcement Learning tasks.

1.1 Motivation

Reinforcement Learning (RL) considers a paradigm of problems involving a goal-oriented agent
that learns through interactions. It mimics a close form of learning that humans do, and is
considered to be a stepping stone towards the general principles of intelligence [1].

High-dimensional inputs

Tabular inputs

0 1 0
— — Computation
— 1 1 0 » Solution

Figure 1.1.1: (a) Deep Reinforcement Learning and (b) Classical Algorithm

Leveraging benefits from deep neural networks, Deep Reinforcement Learning (Deep RL) |2]
(Figure ) is a powerful approach to learning directly from high-dimensional unstructured
input data. It has demonstrated a wide range of applications, such as autonomous driving [3],
dialogue generation [4] and healthcare treatment [5]. However, deep learning is known for being
data-hungry, requiring many samples to train the large set of model parameters. The problem is
exacerbated by the complexity of RL problems. Current agents such as DeepMind’s MuZero [6]
can require 10-50 years of experience per game, making them impractical to real-world tasks.

On the other hand, classical algorithms (Figure ) target the heart of the problem itself,
revealing the underlying reasoning of the problem-solving process. Algorithms intrinsically gen-
eralise and provide mathematical provability and performance guarantees. However, algorithms
often impose rigid assumptions on the input format, inhibiting them from solving more complex
problems.
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An emerging field, Neural Algorithmic Reasoning |[7], looks at learning classical algorithms
with deep neural networks to achieve the best of both worlds [8][9][10]. Deep learning elevates
the input constraints of algorithms by representing natural data as feature vectors in high-
dimensional space. Conversely, algorithms instil proper inductive bias into the neural network
to guide the learning with better sample efficiency and generalisation ability. The mutually
beneficial relationship sets the ground for this project, where it introduces classical algorithmic
reasoning into Deep RL to bring about a highly scalable agent for complex control tasks.

1.2 Previous Work

Following the direction of combining classical algorithms and Deep RL, this project looks at a
very recent work, eXecuted Latent Value Iteration Nets (XLVINSs), presented by Deac et
al. [11] at the 35" Conference on Neural Information Processing Systems (NeurIPS 2021).

XLVINs’ central idea is to align Graph Neural Networks (GNNs) with value iteration to imitate
the algorithm’s behaviour. Value iteration is a classical dynamic programming algorithm that
guarantees to solve an RL problem, but it requires a tabular representation of the environment.
The usage of a GNN to simulate value iteration enables the handling of high-dimensional raw
data directly. On the other hand, value iteration gives the GNN a reasoning power to analyse
the RL problem and produce better decision-making strategies. Together, XLVIN agents can
learn to select actions intelligently within a low data regime.

XLVINs have demonstrated successful applications in some environments, such as grid-world
mazes, classic control, and pixel-based Atari. However, these environments only belong to a
subset of RL problems due to the following limitations that constrain XLVINs.

e Discrete control: XLVIN agents can only choose an action from a discrete set, such as
pushing left or right, but not from a continuous range, such as pushing with a specific
magnitude in the range of [0, 1].

e Singular dimensional control: XLVINs can only handle a single action at a time, such
as turning one particular joint. An action vector allows a higher degree of control, such as
instructing a robotic dog to run by operating its four legs simultaneously.

e Relatively simple dynamics: XLVINs are also restricted by a small action space,
only allowing a limited set of action choices. This restriction is due to an architectural
bottleneck which will be discussed in later chapters.

Continuous action space adds extra difficulty to the decision-making agent due to the infinite
pool of action choices, requiring more careful treatments and thinking. Nevertheless, continuous
control is of significant importance, as most simulation or robotics control tasks [12] have
continuous action spaces by design. Furthermore, high complexity naturally arises as the problem
moves towards more powerful real-world domains, such as DeepMind’s recent application in
controlling nuclear fusion plasma with Deep RL [13]. The scalability of how well the agents can
handle highly complex continuous control under rich contact with the environment is substantial
in filling the gap between a theoretical framework and its physical embodiment.
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1.3 Contribution of my project

My project was a success, meeting all Success Criteria and Extensions. [ first implemented the
XLVIN model and evaluated its performance on discrete control problems. Based on XLVINs, I
then proposed a novel architecture Continuous Neural Algorithmic Planners (CNAPs),
which can tackle continuous action space problems. Most notably, CNAPs can scale up to
high-dimensional continuous control problems with complez dynamics. The successful expansion
in application scope demonstrates that such a Deep RL agent with algorithmic reasoning power
can be applied to domains with more real-world interests, such as autonomous driving, virtual
environments, and robotics simulation.

Furthermore, the contribution of my project is not limited to Deep RL. Also as a subject
of interest to Neural Algorithmic Reasoning, my project introduces a novel set-up to align
discrete GNN processes with discrete algorithms under continuous inputs. The results based
on this project were awarded Best Paper Finalist at GroundedML: Workshop on Anchoring
Machine Learning in Classical Algorithmic Theory, the 10" International Conference on Learning
Representations (ICLR 2022) [14]. T would also like to further explore the topic in future, given
its exciting potential.

1.4 Structure of dissertation

The dissertation is structured as follows: Chapter [2] presents the theoretical background required
to understand this project, as well as the undertaken software engineering approach. Chapter
explains the composition of XLVINs and CNAPs and the algorithms involved, including the
construction of the training and testing pipelines. Then in Chapter {4} I present the quantitative
and qualitative analyses performed to demonstrate the effectiveness of both XLVINs and CNAPs.
Finally, I discuss the achievement and reflection in Chapter [5[ and point out possible future
work directions.



Chapter 2

Preparation

In this chapter, I introduce the background theory required to understand the project,
followed by a documentation on the starting point and requirement analysis . Then I
describe the software engineering techniques used throughout the execution of this project.

2.1 Background Theory

This section starts by introducing Reinforcement Learning as the context of this project.
Then it describes Graph Neural Networks with an explanation of their basics and how
they act as the core for Neural Algorithmic Reasoning . This leads to a discussion on how
classical algorithm subroutines can be introduced into Reinforcement Learning agents. Finally,
it introduces Proximal Policy Optimisation as the training algorithm for the models.

2.1.1 Reinforcement Learning

A Reinforcement Learning (RL) problem involves an agent that observes the state of the
environment and learns to take actions in order to achieve a goal. It can be formally described
using the Markov Decision Process framework.

Markov Decision Process (MDP):

- ~
i Agent
state reward g action a; =
St r(se,ar) . argrerfx m(ay|st)
Environment [«
L J

change to next state s;11
by p(st11 |St> at)

Figure 2.1.1: Framework of Reinforcement Learning

As illustrated in Figure , at each timestep t € {0,1,..., T}, the agent performs an action
a; € A under the current state s; € S according to a policy m. A policy 7(as|s;) defines the
probability of selecting action a; given state s;. The action spawns a transition from state s; into
a new state s, by a transition probability p(s;i1]|s¢, a;), and produces an immediate reward
ry = (s, a;). Transition and reward functions assume Markov property of memorylessness, so
they depend only on the current state following an action. The cumulative rewards received
over time can be specified as the infinite horizon discounted return:

R(r) =) A'n (2.1.1)

4
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where trajectory 7 = ((So,a0), (S1,a1), (S2,a2), ...) is the sequence of state-action pair the agent
has experienced, and v € [0, 1] is the discount factor that determines how much emphasis is put
in the distant future rather than the immediate future.

The goal of the agent is to maximise the above return it receives in the entire episode. In
summary, an RL problem can be stated as finding the optimal policy which maximises the
overall return:

7" = argmax E, . [R(7)] (2.1.2)

T

where the trajectory 7 is generated according to the policy 7. And at timestep ¢, we can evaluate
how desirable a state s is in the long term by the state-value function:

V*(s) = E,n+[R(T)]8: = 8] (2.1.3)

Value Iteration algorithm:

Value Iteration (VI) [15] is a classical dynamic programming algorithm that computes the
optimal policy 7* and its state-value function V*(s) given a fully known MDP. It randomly
initialises V*(s) and iteratively updates it using the Bellman optimality equation [15]:

() = max{r(s.a) + 7 3 p(ss. )VE (<)} (2.1.4)
s'eS

The optimal state-value function V*(s) is found at convergence. We can then extract the optimal
policy 7 by finding which action leads to the optimal state-value function:

7*(s) = argmax{r(s,a) + Zp(s’\s, a)V* (s} (2.1.5)

acA ses

Algorithm 1 Value Iteration
Randomly initialise Vj(s) for all s € S
repeat

for s € S do

| Vi i(s) < BellmanUpdate(V;*(s))

end
until [V, - V7| <€
Output: V*

However, value iteration requires the tabular representation of an MDP that perfectly describes
the RL problem. Extracting an accurate MDP is usually unrealistic, especially for RL problems
closer to real-world tasks. The reason is that the dynamics can be too complex to be formalised
by the transition and reward functions, such as when there are multiple agents or unobservable
states. The Markov property of memorylessness is also a fundamental assumption that one
may not satisfy. The difficulty in MDP modelling explains why, although an optimal algorithm
exists, RL remains a challenge to the field.
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2.1.2 Graph Neural Networks

An MDP can be modelled as graph-structured data, by treating states s as nodes and state
transitions s = s’ as edges. On the other hand, Graph Neural Networks (GNNs) [16][17] were
introduced to generalise traditional deep learning techniques, such as stacking multiple layers of
convolutions, onto graph-structured data, preserving the intrinsic graph information like the
topological dependencies between nodes.

Formally, a graph can be formulated as G = (V, E), where V is the set of nodes and E is
the set of edges. Each node s € V is connected to a neighbour s € N(s) C V by an edge

—

es_s € E. We can then represent high-dimensional data as node features h, € R™ and edge
features €y_, € R™, where m and n are dimensions.

Message-passing GNN:

One flavour of GNNs is the message-passing GNN [18], which iteratively updates its node feature
hs by aggregating messages from its neighbouring nodes as illustrated in Figure .

=
t
hg/ ms’

Figure 2.1.2: In one timestep of message-passing, a node gathers messages from its
neighbours (left) and updates its node features using the aggregated message (right).

Formally, at each timestep ¢, a message can be computed between each connected pair (s, s") by
a message function M (E';, Eg,, €ss). A node receives messages from all its connected neighbours
and aggregates the messages via an operator €. Since GNN operates on graphs, the ordering
of neighbours may not be defined. Therefore the aggregate operator € has to be permutation-
invariant, which means it produces the same output regardless of the spatial permutation of the

inputs. The aggregated message m’ of a node s from all its neighbours N (s) is formulated as:
T?Lg = @ M(Egv Ei’: é’s’—>s) (216)
s'eN(s)

The node feature ﬁf; is then transformed via an update function U:
R = U(RL, mt) (2.1.7)

2.1.3 Neural Algorithmic Reasoning

We have seen that value iteration uses MDP to compute the optimal policy and its state-value
function, while GNN can operate on MDP data if we model MDP as graphs. It is natural to
wonder if we can link GNN and value iteration together. Recent advances in GNN have led
to Neural Algorithmic Reasoning [7], with the idea of using GNNs to learn classical Dynamic
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Programming (DP) algorithms, such as value iteration. An algorithm alignment framework [§]
was proposed to demonstrate the similarities between the two.

Algorithm alignment framework:

A DP algorithm decomposes the problem into smaller sub-problems, and recursively computes
the optimal solutions via a DP-Update operation on sub-solutions Answer[t][j].

DP: | Answer]7 + 1][i]|=| DP-Update({Answerl[¢][j], j = 1...n})
GNN: nH\=u(htm  wt= | @) ML R e )
(2.1.6) YO 017)

Figure 2.1.3: Alignment between DP and GNN. Here, convolution rules from a message-
passing GNN are used to illustrate the similarity.

As shown in Figure we can treat (i) Answer[t][i] as GNN’s node feature h, and (ii) DP-
Update as GNN’s aggregation operator €. Therefore updating Answer[t][i] to Answer|[t + 1][i]

can be seen as updating GNN’s node feature from A% to hL+.

Following this, they found that GNNs can simulate DP algorithms well with good sample
efficiency and generalisation ability due to their close alignment. Also, [9] showed that imitating
individual steps of graph algorithms using GNNs has transferability benefits.

Simulate Value Iteration with GNN:

Value Iteration (VI), being a dynamic programming algorithm, also exhibits a close alignment
with GNN. Previous work [19] used a message-passing GNN to simulate each small step of
value iteration by matching the Bellman optimality equation (Eqn with GNN convolution
steps (Eqn (Eqn as illustrated in Figure They demonstrated that it could
approximate value functions well, and display good generalisation ability on out-of-distribution
data.

Aggregate Node  Edge
Operator Feature Feature
_— |
. g SN t t|=
GNN-message: m,= @ M(hi,|hiie ) (2.1.6)

sre{@\/ﬁ

VI V;il(s) = max{|r(s, a)|H yuZp(s’l s,a Vl.*(s’)} (2.1.4)

acA

GNN-update: it =\U(hY, m?) (2.1.7)

Update Node
Operator Feature

Figure 2.1.4: Alignment between Value Iteration update rule and GNN convolution rules.
Pairs of correspondance are highlighted in the same colours.
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Combining Neural Algorithmic Reasoning and Deep RL:

Recall that the problem of using value iteration to solve RL problems lies at the requirement of
a tabular MDP that exactly matches the RL dynamics, which is usually intractable. Here, the
generalisation ability from Neural Algorithmic Reasoning comes as a solution for filling up the
gap between abstract and natural data.

Figure illustrates the three components of Neural Algorithmic Reasoning framework [7]:
1. Encoder: maps a natural input into the abstract domain (left red arrow).

2. Processor: a GNN pre-trained on synthetic abstract data (blue arrows) to simulate a
dynamic programming algorithm in the abstract domain.

3. Decoder: maps the abstract output back to the natural domain (right red arrow).

Training

/\

\S'J Executor

Pre-training

stage:
Abstract inputs Abstract outputs
Encoder Decoder
Usage
stage:
Natural inputs Natural outputs

Figure 2.1.5: Framework of Neural Algorithmic Reasoning

The idea of eXecuted Latent Value Iteration Networks (XLVINs) [11] is based on Neural
Algorithmic Reasoning. It trains a message-passing GNN that simulates value iteration algorithm
under supervised settings with artificially prepared abstract MDP data. Then it uses the pre-
trained GNN as the processor, and applies it to a “black-box” RL problem where MDP is
unknown. It thus takes natural observation from the environment and outputs a policy directly.

2.1.4 Proximal Policy Optimisation

Finally, we need a training algorithm for the models. Proximal Policy Optimisation (PPO) [20]
is a policy-gradient optimisation algorithm for RL problems. It is attractive for its empirically
better sample complexity, simplicity, and compatibility with Stochastic Gradient Descent (SGD)
. An in-depth explanation of PPO can be found in Appendix due to its non-essentiality
to this project’s core contribution. At the high level, it performs a local search for the best
policy based on policy gradients, computed with the following objective:

Lppo(6) = LEMPHVE+S(g) — E[LCUP(9) — ¢, LVF(0) + ¢,S[mp](s)] (2.1.8)



CHAPTER 2. PREPARATION 9

where L°UP(0) estimates expected cumulative rewards, LY¥ () computes state-value function
loss, and S[my](s) measures entropy, with ¢, and ¢ as coefficients.

The algorithm has an iterative policy evaluation-improvement style that alternates between two
stages: (1) policy evaluation: perform under the current policy to generate action data, and (2)
policy improvement: evaluate the loss function and then update the policy.

Algorithm 2 PPO [20]

for i=1,2,...,rollouts do

for actor=1,2,...,N do
Run policy mg ,, in environment for 7' timesteps

old
Compute advantage estimates 1211, ooy A

end

Optimise LMPHVERS () with K epochs and minibatch size M < NT

Oo1q < 0

end

2.2 Starting Point

Concepts: My relevant knowledge on the topic came from Artificial Intelligence (IB), where
I learnt about multilayer perceptron and backpropagation in neural networks. Deep Neural
Networks (II) and Machine Learning and Bayesian Inference (II) were also helpful, but both
courses came later in the year. Prior to the project, I read the book Reinforcement Learning:
An Introduction [1] during the summer to back up myself with the theoretical knowledge.
Furthermore, XLVIN (Deac et al. 2021 [11]) is a very recent work that involves much novelty in
its topics covered, and my work was to find possible solutions to extend it. Consequently, I also
read current literature extensively for a wider understanding and methodology inspiration.

Tools and code: I had neither experience building neural networks nor reinforcement learning
models, so I had to read up on the relevant library usage, especially PyTorch, such as its
automatic differentiation with computation graphs. Besides the functionalities provided by the
third-party libraries listed in Table [2.4.1] T implemented all the models and training/testing
pipelines on my own, except that I adapted the PPO implementation from [22] with modifications
to accommodate model, environment, and data collection pipeline differences.

2.3 Requirement analysis

The requirements stay the same as in the Project Proposal (Appendix . The core project
aims to implement and evaluate the XLVIN model in discrete control tasks, and then extend
it to solve continuous control problems. For extensions, I aim to tackle XLVIN’s inability in
dealing with multi-dimensional and large action spaces. Complex continuous control is an active
research area, therefore the extensions are exploratory in nature, requiring substantial research
and experimentation on possible solutions.

In Table [2.3.1] T list out the main deliverables along with their risk analysis for better project
management. Then in Figure [2.3.1] T break down the project into implementation modules and
present a dependency analysis.
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Main Deliverables Priority Risk
Environment interfaces and training/testing pipelines High Low
Message-passing GNN to simulate value iteration High Low
PPO Baseline model High Low
XLVIN model for discrete control problems High
Extended model for continuous control problems
Extended model for multi-dimensional control problems (*) | Low High
Extended model for complex continuous control problems (*) | Low High
Open-source the implementation as a package (*) Low
Table 2.3.1: Main deliverables and their risk analysis, where (*) indicates extensions
r ) r ) e N
Generate synthetic Implement Proximal Set up the RL environments
Markov Decision Process Policy Optimisation
data (PPO) baseline model il
J \ Y,
v - l Construct a pipeline for data
Implement value iteration ( ) collection
llgarstfi Implement eXecuted
) Latent Value Iteration y
! ~ Nets (XLVINs) N Evaluate XLVINs on discrete

Implement and train a
message-passing GNN

| Wrap everything into a |
| package and open-source !

S

High priority

Medium priority

Low priority

Extension

A

Discretise the continuous
action space

—_— e = Ve e e - =

Deal with increased

action space problems

Evaluate the extended model
on continuous action space
problems

_’: Explore the extended model’s
| performance with graph size

Evaluate on highly complex

complexity from
discretisation

continuous control MuJoCo
environments

Figure 2.3.1: Dependency analysis of the implementation components

2.4 Software Engineering Techniques

2.4.1 Development model

The project is machine learning in nature, so I adopted the agile development model. Along with
the modular dependency analysis in Figure [2.3.1] agile development’s iterative cycle allowed
me to proceed with the modules sequentially. It also provided more flexibility when the tasks
became research and exploratory so that I could adapt more quickly due to the higher risks
involved. Throughout the project, I also maintained good software engineering practices, such
as careful modular and object-oriented design with comprehensive annotations to ensure code
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readability, reusability, and reachability. I used a Gantt chart (Figure for project planning
with sufficient buffer time to accommodate unforeseeable difficulties, as well as Github’s Kanban
board for better project and code management by listing and categorising tasks in a card-style
visualisation.

= Planned, Bl = Actual, [} = Buffer Michaelmas Winter Vacation Lent Easter Vacation it

81910 11112/13114 15 16|17 18 1920121 22123 24|25 26 27128,

~

12 3 4 56

Core Project

Read up on theory and library uses

Set up the environment interface ..
Implement GNN Executor .=

Implement PPO Baseline agent

Implement XLVIN agent ..

Train and evaluate on discrete control

Discretise the continuous action space

Train and evaluate on continuous control

Progress report and presentation
Extensions :
1
Extend to multidimensional control .. 1

]

||

1

1

1

i

1

Extend to complex continuous control

Evaluate on MuJoCo environments

Figure 2.4.1: Gantt Chart for the project

Explore performance with graph size

‘Wrap into an open-source package

Dissertation writing

2.4.2 Languages, libraries, tools

The language used for the project was Python 3.7 due to the employment of PyTorch, which
provided extensive support for building and training neural networks. I listed the third-party
libraries below and open-sourced my implementation under MIT Licence.

Library Purpose Licence
torch Build and train neural networks; GPU interface BSD License
networkx Provide graph structures for GNN training BSD License
gym Provide Reinforcement Learning environments MIT License
stable_ Provide functional wrappers around environments | MIT License
baselines3 | to facilitate training and testing
numpy Facilitate empirical studies BSD License
seaborn Provide tools for plotting and visualisation BSD License
matplotlib | Provide tools for plotting and visualisation PSF License
setuptools | Build into a package and open-source MIT License

Table 2.4.1: List of third-party libraries used in the project
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2.4.3 Hardware, version control, backup

I developed the code with PyCharm IDE on my personal laptop (MacBook Pro 2019, 1.4 GHz
Quad-Core Intel Core i5, 8 GB). Training and testing were performed on Google Colab’s GPUs
(Tesla V100-SXM2-16GB). I used GitHub for version control with clear commits to easily
trace back earlier versions. I also used Google Drive to backup all logs and experiment results
regularly. Lastly, I used Overleaf for the writing of this dissertation in KTEX.
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Implementation

This chapter explains the implementation details for the project. I start with introducing the
environment interfaces , which sets up the context of problems to solve. Then I explain
the idea of a GNN Executor , which is a message-passing GNN trained to simulate value
iteration algorithm. The model to implement for this project is XLVIN , which I break down
into four components and explain each in detail, including how it uses the GNN FExecutor as a
core processor. This is followed by a discussion on XLVIN’s limitations and how I introduced
new extensions to tackle each bottleneck, leading to a new model named CNAP , which
can run in complex continuous control environments. Next, I explain the training and testing
strategies for the above models. Finally, I give an overview of the code repository .

Models under study
PPO Baseline XLVIN (3.3) CNAP (3.4)
Encoder Encoder Discretisation
Policy /Value Transition Encoder
. observation
Environment > Executor Transition
(3.1) <
action GNN Executor
Executor GNN
@ (3.2) Executor
Policy/Value Neighbour
Training/Testing sampling
(3.5) method
1. XLVIN builds upon PPO
Baseline with Transition and B
Executor functions. POhCY/ Value
2. CNAP builds upon XLVIN with Factorised
extensions highlighted in blue. joint policy

Figure 3.0.1: Overview of implementation components

3.1 Environments

An RL environment defines the problem to solve, in which an agent interacts with it to achieve
a goal. I used three sets of RL environments: Classic Control suite and MuJoCo suite from
OpenAI Gym [25], and a self-constructed Maze environment. Below, I explain how I set up the
environment interfaces to facilitate training and testing.

13
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3.1.1 OpenAl Gym

Take CartPole-v0 environment (Figure ) as an example: a pole is loosely attached to the
cart by a joint. At each timestep, an agent applies a left (action=0) or right (action=1) force to
the cart. It then receives a reward of +1 if the pole does not fall from the cart. The goal is to
keep the pole straight as long as possible, i.e. maximising the cumulative rewards in an episode.

The key interfaces provided by OpenAl Gym are listed here with CartPole-v0 as an example:
e env=gym.make ("CartPole-v0"): Create a new environment.
e env.seed(seed): Set the environment seed for reproducibility.

e env.reset(): Retart a new episode of execution.

e next_state, reward, done, infos = env.step(0): Pass an action=0 (pushing left)
to the environment, and receive (i) next_state it transitions to; (ii) reward as a result of
this action; (iii) whether the current episode is done; (iv) additional environment infos.

e env.render(): to visualise the current state in Figure |3.1.1k.
Additionally, I adopted functional wrappers for env from to aid faster training and testing,
as well as debugging and interpretability:

e VectoriseWrapper: Enabling the parallel simulation of multiple environments.

e NormaliseWrapper: Normalising the environment for complicated environments.

MonitorWrapper: Logging additional information.

VideoRecorderWrapper: Recording videos of the environment to visualise the execution.

Figure 3.1.1: (a) CartPole-v0 environment (b) Maze environment

3.1.2 Self-constructed Maze

[ also self-constructed a Maze environment (Figure ), which consists of a square grid where
each cell is a road (0) or a wall (1). The agent starts at a specified position, aiming to reach a
goal cell. At each timestep, it chooses to proceed in eight directions.

The Maze problem is not provided in OpenAl Gym, so I implemented a MazeEnv class that
inherits from gym.Env and follows the same interfaces:

e env=gym.make ("MazeEnv"): Call the constructor of MazeEnv to set up the action space
(8 directions) and observation space (square grid).

e env.reset(): Restart the episode by loading a new maze from pre-processed grid data.
Set up the start position and state.
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e next _state, reward, done, infos = env.step(0): Move the agent in direction 0 by
one step. If the agent bumps into a wall or visits the same cell, it returns a reward of -1
and restarts the episode. If the agent reaches goal position, it returns a reward of +1 and
restarts. Otherwise, it gives a reward of -0.01 to penalise prolonged episode, returns the
new position, and continues execution.

e env.render(): A textual representation of current state.

The mazes are ranked by difficulty levels: defined as the length of the shortest path from start
to goal cell. T used the 8*8 grid-world data[l| consisting of 34944 mazes, computed the shortest
solution path for each maze, and grouped them by difficulty levels.

3.2 GNN Executor

With the problem context set out, I now explain the implementation of the models. Recall that
the central processor of XLVIN is a message-passing GNN pre-trained to simulate the
value iteration algorithm under supervised settings. In this section, I explain how such a
GNN Executor is implemented and trained.

Modelling MDP with graphs:

As discussed, value iteration takes a Markov Decision Process (MDP) as input, and
produces the optimal policy 7* and its state-value function V* in an iterative update manner.
Since GNN operates on graph-structured data, we need to model MDP with graphs. One choice
is to have a separate graph for each action a € A, so we would have |A| graphs in total. For
each graph G,(V, F), where V is the set of nodes and F is the set of edges, we represent each
node as a state s € V', and each edge e, » € E as a state transition s N

NS N s NS
S~ T~ NN

(1) Generate graph structure (2) Populate with MDP data (3) Train a message-passing GNN

Figure 3.2.1: Training a GNN Executor

Generate graph structure:

As shown in Figure [3.2.1] the first step is to generate graph structures. I used a set of synthetic
graphs with different types following previous work [25][26] (full list in Evaluation). Take
Erdos-Rényi graphs as an example: given a graph size N and a node degree D, we connect any
pair of nodes randomly by a probability p = N/D. Here, we define the graph size to be the
number of states N = |S| and node degree to be the number of actions D = |A|. By randomly
connecting edges, the generated graph thus defines all transitions s = s’

!Data is taken from https://github.com/kentsommer/pytorch-value-iteration-networks


https://github.com/kentsommer/pytorch-value-iteration-networks
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Populate with MDP data:

The second step in Figure [3.2.1| populates the graph with MDP data. An MDP consists of a
transition probability p(s’|s,a) and a reward function r(s, a). Following the alignment between
Value Iteration update rule and GNN convolution rules in Figure we represent MDP data
using node features and edge features:

node feature: h(s) = (V(s), (s, a)) (3.2.1)
edge feature: €(s,s") = (v, p(s'|s,a)) (3.2.2)

where v € [0, 1] is the discount factor that determins how much emphasis to put in the distant
future rather than the immediate future. We also include the state-value function V(s) in the
node feature as our target predictions.

We can now generate MDP data to fill up the node features and edge features. v is the discount
factor, which is a fixed hyperparameter value. V(s) is the value function, so I implemented the
value iteration algorithm to calculate the ground-truth values. Finally, I randomly generated the
values for p(s'|s, a) € [0,1] and r(s,a) € [~1, 1], with probability constraint ¢ p(s'[s,a) = 1.

Train a message-passing GNN:

The final step in Figure [3.2.1]is the training. As described in Section [2.1.2] at each timestep
t, a node in a message-passing GNN (i) gathers messages from all its neighbouring nodes, (ii)
aggregates messages using a permutation-invariant operator, and (iii) updates its own node
feature.

(i) We define the message function M to be a fully-connected linear layer. For each pair of
neighbours (s, s’), we use M to compute a message using their node features and edge feature:

m(s,s') = M(h(s), h(s),&(s, s)) (3.2.3)

(ii) Then for each node, we aggregate the messages from all its neighbours by summation, which
is permutation-invariant:

m(s) = Y m(s,s) (3.2.4)

s'eEN(s)

(iii) Lastly, we update the node’s own feature vector by adding the aggregated message:

h(s) = h(s) + mi(s) (3.2.5)

Previous work [9] has found generalisation benefits when using GNNs to simulate individual
steps of algorithms. Therefore, we train the GNN Executor to mimic the residual from one step
of value iteration update, i.e. § = V;11(s) — Vi(s). Value iteration iteratively optimises V' (s), so
the GNN is instructed to perform the same number of update steps as the ground-truth value
iteration does.

The message-passing GNN is trained under supervised settings, where the loss function is the
Mean Squared Error (MSE) of the predicted value function:

LMSE = Z(‘/;Srue(s) - V;Jred(s))2 (326)

seS

where Vj,e is computed using value iteration, and Vj,¢q is from the GNN output.
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3.3 eXecuted Latent Value Iteration Nets (XLVINSs)

The GNN Executor is the central processor of XLVIN, which is the model that I aim to reproduce.
XLVIN adopts the Neural Algorithmic Reasoning framework: encode, process, decode. The GNN
Ezecutor is the processor, approrimating the optimal policy’s state-value function. Howewver,
XLVIN also needs to perceive observation from the environment (encode) and instruct the agent
to perform actions (decode). In this section, I decompose XLVIN into four components and
explain their designs individually.

Here is an overview of the four components:

construct a graph

Transition . Executor
T X

Encoder

<

raw state next state updated state policy,
observation embedding embedding embedding value function
S 3 W, X, z,V

N ) N

Figure 3.3.1: Framework of XLVIN

3.3.1 Encoder and Transition
Encoder:

Encoder (z : & — R¥) maps a raw observation from the environment s € S, to a state embedding
in a latent space hz = 2(s) € R*. The dimension of a state embedding is a hyperparameter k.
The latent space is a low-dimensional vector space where the distance between state embeddings
reflects similarity, that is, more similar ones are grouped closer together.

Encoder is implemented using a three-layer Multilayer Perceptron (MLP) with an input layer,
a hidden layer, and an output layer. An MLP is a fully-connected feedforward network, as
shown in Figure [3.3.2] where there is a single direction of signal flow from input to output. The
Rectified Linear Units (ReLLU) [27] activation function (¢(x) = max(0,x)) is inserted between
each layer so that the network can distinguish data that is not linearly separable.

input hidden output
layer layer layer

Ly 4 \\e Or K
111%{
3 2
xz
Tn x
(a) (b) (c)

Figure 3.3.2: (a) a single perceptron (b) a 3-layer MLP (c) non-linearity of ReLU activation
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Transition:

Transition (7" : R* x A — R*¥) takes two inputs: the state embedding of an observation
z(s) € R¥, and an action a € A. It predicts the transition leading to the next state embedding
2(s") € R*, where ideally the environment would experience a transition s — s’. Formally,

2(s) + T(2(s),a) = Egp(s)s,a)z(s) (3.3.1)

The action a is flattened using one-hot encoding and stacked together with the state embedding
z(s) as one input vector. Transition has the same architecture as Encoder, using a three-layer
MLP with ReLU added between each layers. The difference is that Layer Normalisation 28] is
applied before the output layer to normalise the input distribution for smoother gradients and
better generalisation ability:

x — E[x]

v /Var[z] + ¢

Training with contrastive TranseE loss:

+ 0 (3.3.2)

The performance of Encoder and Transition relies on the mapping from raw observations to
state embeddings in the latent space. Ideally, if s’ is the successor state when taking an action a
under state s, then we want to achieve two goals: (i) group hy as close as possible to hg, while

(i) keeping hy away from any other state embedding hs. To achieve (i), the loss function is
designed based on TransE [29], which was proposed to model relationships as translations for
entity embedding tasks. To achieve (ii), it is augmented with contrastive learning [30], where
negative samples s are also taken into account. A negative sample is a state § that is different
from the true next state s’. I stored all transition triplets (s, a, s") experienced by the agent in a
replay buffer and randomly sampled the negative sample s from it using a uniform distribution.

Formally, the contrastive TransE loss function is defined as:
Lrransi((s, a, 8'), 8) = d(z(s) + T(2(s), a), 2(s")) + max(0,§ — d(2(5), 2(s"))) (3.3.3)

where d(z1,T3) = ||z1 — 22||3, and £ > 0 is a hinge hyperparameter that defines a lower bound
on the distance between two state embeddings that we would consider as different.

3.3.2 Executor
Input features:

Executor (X : R* — R¥) uses the GNN that simulates value iteration from Section as the
core processor. Recall when training the GNN, we used the feature definitions below to generate
artificial MDP data with synthetic graphs:

node feature: h(s) = (V(s), (s, a))
edge feature: €(s,s") = (v, p(s'|s,a))
However, it is usually intractable to map RL problems exactly into MDPs because the dynamics
can be too complex. This means transition probability p(s|s,a) and reward function (s, a)
may not be provided. We therefore use slightly different feature definitions to accommodate the
lack of MDP data:
node feature: h(s) = z(s)

edge feature: €(s,s") = (v, a)
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where z(s) is the state embedding from Encoder output, and a is an action.

The difference in input distribution is handled by the generalisation power from Neural Algo-
rithmic Reasoning [§][9][19]. It hypothesises that when plugged into XLVIN, the pre-trained
GNN that imitates value iteration can still predict well even though the feature definitions are
different. This hypothesis will be validated in Evaluation.

Construct a GNN graph:

latent space message-passing GNN

4 L ) |
Inputs: : : :
' 4 oﬂ : : / E
Encoder | _, “Transition _, .~ ; i _ ¥ Executor ;
Ry memmmmpemeeed g ooeeeees > X, —— < :
T(hpa) - Pl W X(HN(R) N :
K N \ E
R o E

l P 1' —_— —_ —

Outputs: oucy P(hy, Xy) =n(als)

Value V(Z)S, Ys) =V()

Figure 3.3.3: Given a state embedding ﬁs as a starting node, Executor uses Transition
T'(hs,a;) to expand edges. It builds a graph and then simulates value iteration with the
pre-trained GNN.

From feature definitions (Eqn m, Eqn , we can see each node corresponds to a state
embedding, while each edge corresponds to an action. Therefore, we can construct a GNN graph
as shown in Figure (1) treat the input state embedding ki, as a starting node; (2) enumerate
all possible actions a; € A as edges to expand from the current node; (3) use Transition to
predict the next state embedding ﬁs; as neighbours, corresponding to the transition s — s/:

N(hy) = {hy = T(hs,a;), for all a; € A} (3.3.6)
This adds one layer of new nodes to the GNN graph. We can repeat the process for ¢ times, each
time expanding the nodes from the previous layer, leading to a graph of ¢ layers, and each node
has a degree of | A|. We can say the GNN graph has depth ¢ and width | A|. The depth ¢ also
indicates the number of value iteration updates the GNN would perform. Finally, Executor
outputs an updated state embedding, X, =X (ﬁs,/\/ (ﬁs)) The pseudocode for Executor can
be found in Appendix [A.2]

Architecture:

The pre-trained GNN is directly plugged in, augmented with an input layer (to process inputs
received from Encoder) and a output layer (to process outputs before sending to Policy/Value),
which are both implemented as single fully-connected linear layers.
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3.3.3 Policy and Value
Policy:
As shown in Figure [3.3.3] Policy (P : R¥ x R¥ — RMI) takes the outputs from Encoder and

—

Executor, i.e. the state embedding hs and the updated state embedding 225, then produces a
policy m = p(als) defining the probability of taking each action a under current state s.

Policy is a fully-connected linear layer with an output dimension same as the number of all
possible actions |A|. The output policy 7 € RMI is used as logits for a categorical distribution
where the categories are the actions. The agent can choose an action by sampling deterministically
(i.e. taking the mode) or non-deterministically (i.e. taking a random sample) from the categorical
distribution by providing the current state.

Value:

Value (V : R* x R* — R) takes the same inputs as Policy, and produces the policy’s estimated
state-value function of the current state V(s).

Value is also a fully-connected linear layer with a scalar output, which is an approximated value
for V(s).

3.4 Continuous Neural Algorithmic Planners (CNAPs)

The main limitations of XLVINs are their incapabilities to deal with continuous control envi-
ronments and large action spaces. In this section, I propose Continuous Neural Algorithmic
Planners (CNAPs) and explain the extensions I made based on XLVINs to tackle the aforemen-
tioned limitations. I will demonstrate a successful application of CNAPs in complex continuous
problems in Evaluation. CNAPs move the idea of XLVINs forward to a much broader application
range closer to real-world domains.

3.4.1 Dealing with continuous action space

3.4.1.1 Discretisation by binning

The discretisation technique I chose was to split the continuous action space into evenly spaced
discrete action bins. Previous works such as [31][32][33] have demonstrated the effectiveness of
such technique with on/off-policy optimised agents in continuous RL problems. Without losing
generality but for demonstration purpose, we can assume the action space to be A = [0,1]. The
number of action bins is set as a hyperparameter N, so the action space is discretised into:

Adiscrete :{CL(),(II, "'7aN—1}7 (341)
21+ 1 141
where a; = %, i.e. the median of [%, Z-]; 1 (3.4.2)

Instead of a continuous range, we now have N discrete actions in our action space. The above
equation can be easily generalised to an arbitrary continuous range.

In OpenAl Gym, a discrete space is implemented by class Discrete, and a continuous space
uses class Box, both inherited from the superclass Space. In order to integrate the discretisation
process into XLVIN, we can implement a wrapper on a given environment to turn its action
space type from Box to Discrete:
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def discretising_ wrapper(env, N):
# discretise env’s action space into N discrete actions

def discretised_reset():
# calling the original env’s reset() function

def discretised_step(action):
# turn the action type from Discrete to Box
# calling the original env’s step(action) function

# replace the original env’s reset and step functions
env.reset = discretised_reset
env.step = discretised_step

return env

With this wrapper, the agent can send discrete action to env.step(action) and interact with
the environment as before.

3.4.2 Dealing with higher complexity

The action space experiences a combinatorial explosion in size when it expands from one-
dimensional to multi-dimensional. This problem becomes almost unavoidable when a continuous
action space is discretised with the above method. For example, assuming the action space
A has D dimensions, and in each dimension, we discretise into N action bins, this leads to
| Agiserete] = NP actions in total. Real-world RL problems usually have complex dynamics with

high-dimensional action space. The explosion in action space thus poses a challenge for the
vanilla XLVIN models.

Specifically, there are two bottlenecks in the model design that inhibit XLVINs from acting in a
large action space:

(i) Policy outputs an optimal policy 7* with a dimension of |4, because 7 = p(al|s) specifies
the probability of choosing each action given the current state.

(ii) Executor requires a graph where nodes are states and edges are actions. It constructs
the graph by expanding a node with an enumeration of all possible actions, so each node
has a degree of |A|. The graph size also adds another level of exponential explosion as we
expand the graph layer by layer from a central node.

Below, I will address the two bottlenecks respectively. I propose to use a factorised joint policy
for bottleneck (i), and a neighbour sampling method for bottleneck (ii).

3.4.2.1 Factorised joint policy (Extension)

Say each action @ € A has D dimensions, and each dimension has N discrete action bins.
A naive policy m* = p(d|s) produces a categorical distribution with N possible actions. To
tackle this explosion in policy dimension, previous work such as [31] uses a sequence model to
predict action in each dimension sequentially, but this poses a prior assumption on the order
of dimensions. A parallel work [32] proposes to learn a separate policy for each dimension
independently, but their results were limited in a small number of tasks. I chose to adopt the idea
from [33] to use a factorised joint policy due to its promising performance on a comprehensive
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set of continuous environments:

m*(d|s) = Hﬂf(ai]s) (3.4.3)

It approximates D policies at the same time, where each policy 7} (a;|s) indicates the probability
of choosing an action a; € A; in the i*" dimension, where |A4;| = N. In total, the factorised joint
policy 7* has an output dimension of N - D instead of N”. Hence the dimension of 7* grows
linearly with the increase of dimension, instead of exponentially.

Policy layer

Policy for
dimension i
g
m¥(ag|s)
z§ 00
2
X
0 5@ | 5)
a9
1
z} way |s)
a3

Figure 3.4.1: Factorised joint policy for N=3 and D=2

To implement this change, Policy layer outputs |A| = N - D logits, and we separate these logits
sequentially into D groups: [(z0, ...,z "), ..., (%_, ...,2_1)] as shown in Figure 3.4.1} Then
we send each group of logits Z; to a categorical distribution i. To sample an action @ from 7*,

we pick each a; from categorical distribution 7, then stack them together as @ = |ao, ....,ap_1]”.

Other implementation change across the whole model is needed. This includes adapting from
Discrete to MultiDiscrete, which is the class used by OpenAl Gym for multi-dimensional
space, as well as the one-hot encoding method used for actions.

3.4.2.2 Neighbour sampling method (Extension)

As shown in Figure|3.4.2] the second bottleneck lies in the Executor. When Executor constructs
a graph to execute the pre-trained GNN, it treats each state as a node, then enumerates all

possible actions @; € |A| to connect neighbours via approximating H(S) %, E(sg) Therefore each
node has degree | A|, and graph size grows even faster as it expands deeper.

.- -

h
J.a : .
7 sf*'x' : Four sampling methods
]& . A ; on actions to expand:
— T(hgap)) — '

s Tt sh TS > ; (1) Manual-Gaussian
. ; (2) Learnt-Gaussian
z@\’x‘ N ; (3) Reuse-Policy

2 4_> . (4) Learnt-Sampling

..................................

Figure 3.4.2: Executor constructs a graph by enumerating all possible actions, thus
n = |A|, which becomes intractable. Four sampling methods are proposed to avoid a full
enumeration, so only n = K < | A| actions are selected to expand.
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To tackle this challenge, instead of using all possible actions, I propose to use a neighbour
sampling method to choose a subset of actions to expand. The important question is which
actions to select. The pre-trained GNN uses the graph constructed to simulate value iteration
behaviour and predict the state-value function. Recall the value iteration update rule:

a(s) = ma{r(s, @) + 3 3 p(s'ls @)V ()

s'eS

Hence, it is critical that we can include the action that produces a good approximation of the
state-value function in our sampling.

Four possible methods:

We set the number of neighbours to expand for each node, K < |A|, as a hyperparameter. I
now explain four possible methods that I propose to sample K actions from A.

Firstly, I implemented two Gaussian-based methods for sampling. Gaussian distribution is a
common baseline policy distribution for continuous control problems (such as in [33]), and it is
straightforward to interpret. Gaussian distribution discourages extreme actions while encourages
neutral ones with some continuity, so it can potentially be a good candidate. A Gaussian
distribution A (1, 0%) can be formalised as:

(3.4.4)

where p is the mean, and o is the standard deviation.

(1) Manual-Gaussian: A Gaussian distribution is used to randomly sample action values in
each dimension a; € A;, which are stacked together as a final action vector @ = [ay, ..., a D,l]T €
A. We repeat for K times to sample a subset of K action vectors. We set the mean u = N/2
and standard devisation ¢ = N/4, where N is the number of discrete action bins. These
two parameters are chosen to spread a reasonable distribution over [0, N — 1]. Outliers and
non-integers are rounded to the nearest whole number within the range [0, N — 1].

(2) Learnt-Gaussian: The two parameters manually chosen in the previous method pose a
constraint on placing the median action in each dimension as the most likely. Here instead,
two fully-connected linear layers are used to estimate the mean p and standard deviation o
separately. They take the state embedding f_is from Encoder and output a scalar value each.
The rest of sampling remains the same.

Gaussian methods still restrain a fixed distribution on the sampling distribution, which it may
not necessarily fit. Previous work [34] studied a similar action sampling problem. They reasoned
that since the actions selected by the policy are expected to be more valuable, we can directly
use the policy for sampling. This inspired me to propose the following method.

(3) Reuse-Policy: We can reuse Policy layer P(h,, X,) to sample the actions when we expand
the graph in Executor. This is equivalent to using the policy distribution 7* = p(d|s) as the
neighbour sampling distribution. However, the second input X, for Policy layer comes from
Executor, which is not available at the time of constructing the graph. I chose to fill up the
space by setting X, =0 as placeholders.

Lastly, I tried to use a separate layer dedicated to learning the neighbour sampling distribution.
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(4) Learnt-Sampling: I implemented this method with a fully-connected linear layer that
consumes /2, and has an output dimension of |N-DJ. Tt is expected to learn the optimal neighbour
sampling distribution in a factorised joint manner same as Figure [3.4.1] The outputs are logits
for D categorical distributions, one for each dimension, together producing @ = [aq, ..., ap_1]7.

I will provide an analysis of the above methods in Evaluation. Note that a neighbour sampling
method not only targets increased complexity from discretisation in higher dimensions, but it
can also solve any problem with large action spaces. Together with a factorised joint policy,
these extensions tackle the aforementioned limitations of XLVINs, bridging its gap practically
to continuous and higher complexity domains. I named this extended model Continuous Neural
Algorithmic Planners (CNAPs) and will use this abbreviation in later chapters.

3.5 Training and Testing

With the model designs explained, I now describe the training and testing strategies.

3.5.1 Training Strategy

Loss function:

Both XLVIN and CNAP models are trained using Proximal Policy Optimisation (PPO) algo-
rithm. The GNN Executor is pre-trained and directly plugged in, while the rest are all learnable
parameters. The combined loss of the PPO objective (Eqn [2.1.8)) and the contrastive TransE

loss (Eqn [3.3.3)) is:

L(e) = LPPO(9> + A Z LTransE((S; a, 5/)7 §) (351)
((s,a,s"),3) €T

where 6 are learnable parameters, A is the TransE loss coefficient, and T is the set of transitions
and negative samples passed to Transition function.

PPO uses a policy evaluation-improvement cycle to iteratively approximate the best policy
7* = p(a|s). The algorithm was explained with pseudocode in Section [2.1.4] I now explain how
PPO training is used particularly in this project.

Policy Evaluation:

In policy evaluation phase, PPO collects a set of training data by interacting with the environment
under the current policy 7(f). A set of training environments are vectorised to allow parallel
execution. We initiate state transitions by env.step(action), where action is chosen by the
current policy m(#). We then store data collected (state, next_state, reward, done) into a
buffer. Training is repeated until a fixed number of episodes or steps are reached.

Policy Improvement:

In policy improvement phase, the loss function is computed to update the model parameter 8 to
0" with Stochastic Gradient Descent (SGD) [21]. SGD is used here due to its data efficiency. It
randomly splits training data from the buffer into minibatches, and computes the loss function
(Eqn for each minibatch. It then takes a small step in the negative direction of the
gradient with respect to the model parameter in order to minimise the loss function:

. (0)

=05

, with step size n (3.5.2)
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Now the old policy 7(0) is replaced with 7(6"). After SGD repeats for a few epochs, the policy
evaluation-improvement cycle can repeat for a fixed number of iterations.

Optimiser:

The optimiser choice is Adam optimiser [35], a commonly used variant of the vanilla SGD
algorithm. It improves over plain SGD by incorporating (i) a momentum term that accumulates
and averages recent gradients to counter noisy gradient updates and (ii) an adaptive learning
rate to cater for different gradient movement speeds across dimensions. Additionally, I also
augmented with an optional learning rate decay that decreases the learning rate linearly with
PPO iteration. A learning rate decay can stabilise gradients and avoid oscillatory behaviour,
especially when a much longer training process is needed for complex environments.

3.5.2 Testing Strategy

The testing procedure is similar to the policy evaluation phase. A different set of testing
environments are created, and the agent behaves under the approximated policy 7(#). Rewards
are collected for a fixed number of episodes and averaged per episode. The goal of the model is
to maximise this mean episodic reward.

3.6 Repository Overview

— README.md
L requirements.txt

— arguments.py

env.py interfaces and data collection pipeline
— environment —|

maze a self-constructed RL environment

gnn_executor GNN Executor and training

— models
transe Encoder, Transition
ppo PPO implementation
— training —— classic_control.py, mujoco.py, maze.py

training and testing process for each type of environment
Figure 3.6.1: Structure of the repository

Figure [3.6.1] presents the repository structure. Due to the difficulty in unit testing Deep RL,
I mainly used the testing strategy described above in Section [3.5.2] and checked if the results
align with existing literature, such as |11] for Classical Control and [33] for MuJoCo, to validate
the model implementation.
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Evaluation

In this chapter, I present the quantitative and qualitative evaluations performed to demonstrate
how the success criteria of core project and extensions are met. The main topics to explore are:

e How well can GNN Ezecutor simulate value iteration algorithm?
e How well can XLVINs perform in discrete control environments? (4.2
o How well can CNAPs perform in continuous control environments?

o How well can CNAPs perform in highly complex continuous control environments?

Model Evaluation Axes Environments
GNN Executor | Accuracy, Generalisation Ability N.A.
Performance, Stability, Data Efficiency | Discrete Classic Control
XLVIN Predictability
Generalisation Ability
Performance, Stability, Data Efficiency

Self-constructed Maze

CNAP Effect of graph width Continuous Classic Control
Effect of graph depth
Scalability .

CNAP Continuous MuJoCo

Interpretation Analysis

Table 4.0.1: Overview of the evaluation axes under inspection

Both XLVIN and CNAP were compared with a PPO Baseline agent. PPO is a state-of-the-art
agent used as default at OpenAl due to its competitive performance. For reproducibility purpose,
the complete list of hyperparameter values is attached in Appendix [A.5]

4.1 GNN Executor

The GNN Executor is a message-passing GNN trained to imitate each small step of value
iteration algorithm. To guide the evaluation, we can ask the following questions:

Qn. How well can the GNN Ezecutor simulate value iteration algorithm?

e Can it predict the optimal policy and state-value function accurately? (Table

e Can it generalise well to out-of-distribution data? (Table|4.1.2 and|{.1.5)
o Can it scale up efficiently? (Table[§.1.5)

Experiment setup:

The GNN Executor outputs an approximated optimal policy 7(a|s) and its state-value function
V(s). The goal is to estimate the two outputs as close as possible to value iteration’s ground-truth
outputs. Hence, below I define two quantitative metrics to evaluate the predictions:

26
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e Mean squared error (MSE) of state-value function V' (s):

MSE = Z(‘/;frue(3> - %red(s))Q

seS

e Accuracy of policy m(als):

Accuracy = <Z f(argmax Ty ye (Atruel ), argmax mprea(apred|s))

QAtrue €A apredeA

SES

where f(atruea apred) = {

07 Atrye 7£ Apred

1 s Qtrue = Apred
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(4.1.1)

) /|S| x 100%, (4.1.2)

(4.1.3)

The training data was generated using 500 random synthetic Erdos-Rényi graphs with size
(|S] = 20,]A| = 5). We define the number of states |S| to be the number of nodes, and the
number of actions |A| to be the node degree. Each graph is populated with MDP data as

described in Section [3.2]

The testing data was generated on a set of different graph types based on previous works [25][26],
covering a range of sparse and dense graphs. The full description for each graph type can be
found in Appendix The test graphs were also generated with different sizes by varying the
numbers of states and actions, (|S|, |A|). The aim was to test the generalisation ability of the
GNN on out-of-distribution data. Each test set contains 40 randomly generated test graphs.

Discussion of results:

(i) Accuracy: on similar graph types

Graph Type |S| =20, |A| =5

MSE

Accuracy

Erdés-Rényi 0.57 £ 0.7 98.1 + 2.7
Barabasi-Albert | 0.47 £ 0.5 98.6 + 2.2

Table 4.1.1: MSE of state-value function and Accuracy of policy by running one step of
message-passing in GNN. These graphs share similar graph structures and the same size
as the train graphs. The low MSE and high Accuracy show a close alignment between the

predictions and the ground-truth values.

(ii) Generalisation ability: on different graph types

Graph Type |S| =20, |A| =5
MSE Accuracy
Star 2.22 +£4.4 100.0 £0.0
Caveman | 1.66 +1.1 98.1 + 2.7
Caterpillar | 1.33 £ 14 97.6 £ 3.2
Lobster 1.44 £ 25 974 4+ 4.0
Tree 1.40 £15 945 +£5.0
Grid 0.66 +£ 0.7 94.1 £6.1
Ladder 0.68 £0.7 90.1 £5.9
Line 1.02 £ 1.0 90.8 + 6.6

Table 4.1.2: These graphs have out-of-distribution graph structures but the same size as
the train graphs. The overall MSE and Accuracy are slightly weakened but still satisfactory

on both dense graphs (Star, Caveman) and sparse graphs (the rest).
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(iii) Generalisation ability and scalability: on larger graph sizes

Graph Type |S| = 50, |A| =10 |S| = 100, |A| =20
MSE Accuracy MSE Accuracy
Erdé6s-Rényi 049 +£02 988 £15|1.96+£02 994 +0.8
Barabasi-Albert | 048 + 0.3 99.1 +£1.3 | 1.98 £0.2 99.3 £ 0.9
Star 1.12 + 1.1 999 +04 | 2.07 £ 0.8 100.0 £ 0.2
Caveman 0.62+02 98.0+21]198+02 975+1.3
Caterpillar 071 +£03 94.0+3.7|1.93+£02 96.7+1.5
Lobster 0.76 £ 0.3 91.2 +45|1.96 £0.2 94.6 +2.0
Tree 0.71 £ 0.3 95.2+3.0|2.00+03 94.2 4+ 2.2
Grid 0.58 +0.3 924 +£40|2.02+02 91.24+30
Ladder 0.70 £ 0.2 92.24+38 |2.05+0.2 90.8+ 3.1
Line 0.84 £ 0.3 90.0+43|210£02 87.6+35
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Table 4.1.3: These graphs have out-of-distribution (larger) sizes from the train graphs.
The error increases moderately as the graph expands, but the overall performance remains
resilient.

We can see the GNN Executor can predict the policy and state-value function very closely to
the value iteration outputs. This supports the algorithm alignment framework in suggesting that
the close alignment between GNN and value iteration gives good predictability. Furthermore, by
testing the GNN Executor on out-of-distribution graph types and graph sizes, we can see it also
has good generalisation ability, demonstrating the power of Neural Algorithmic Reasoning.
The ability to train on small-sized graphs also suggests good scalability and efficiency.

4.2 XLVIN on discrete control

XLVIN uses the above evaluated GNN Executor as a core processor to facilitate RL decision-
making. It is also known to have good sample efficiency, tackling the limitation that most Deep
RL agents suffer from. In order to evaluate these claims of XLVINs on discrete control problems,
I propose the following questions:

Qn. How well can XLVINs perform in discrete control environments?

e Can XLVINs outperform PPO, which is a state-of-the-art on-policy optimisation algorithm,
on discrete control problems?

o [s the GNN Executor learning meaningful state-value function predictions?
e Can XLVINs generalise onto more complicated environments of the same type?

Models under evaluation:

e PPO Baseline: The baseline agent is implemented as a PPO agent that consists of Encoder
and Policy/Value functions.

e XLVIN-R: On the basis of PPO Baseline, it has additional Transition and Executor
functions. The GNN Executor is pre-trained using 500 random Erdés-Rényi graphs with size
(IS = 20, A = 8).

e XLVIN-B: It differs from XLVIN-R in the way that the GNN Executor is pre-trained with
500 random binary trees defined as: nodes closer to the root have reward 1, while the nodes
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farther away have reward 0. This type of binary tree discourages a monotone pursuit in a
single direction, imitating the bi-directional control for the environments below.

Environment choices:

Episode 10

(i) CartPole-v1 (ii) Acrobot-vl (iii) MountainCar-v0
Figure 4.2.1: Illustration of the selected discrete control environments.

The above models were evaluated on three environments (Figure from OpenAl Gym
[23]’s Classic Control suite. A detailed description and discussion of the difficulties for each
environment can be found in Appendix [A.4] In short, the set covers both dense and sparse
rewards, and it poses a challenge to the agent in balancing between exploration and exploitation.

4.2.1 Performance, Stability, and Data Efficiency

Performance: The most commonly used evaluation metric in RL literature is the average
episodic reward, which I aggregated over 100 test episodes. It directly measures how well the
goal is met, thus the agent’s performance.

Stability: RL agents are sensitive to the stochasticity of environments. I chose to calculate the
standard deviation (std) of the average episodic rewards across 5 seeds to reflect stability.

Data efficiency: In order to evaluate whether XLVIN can produce better policy with fewer
training samples, I compared the agents’ performances under a data shortage condition: training
with only 10 episodes for CartPole-v1, and 100 episodes for the other two environments.

Discussion of results:

Model CartPole-vl Acrobot-vl MountainCar-v0
PPO Baseline | 94.1 4+ 22.2  -479.1 4+ 20.9 -200.0 £ 0.0
XLVIN-R 199.6 £ 04 -265.5 & 64.6 -182.3 £ 16.0
XLVIN-B 186.3 £ 6.85 -224.7 4+ 68.9 -162.2 £+ 18.3

Table 4.2.1: Mean episodic rewards using PPO Baseline and two variants of XLVIN agents.
The best performing model for each environment is highlighted in bold.

As seen in Table [4.2.T] both variants of XLVIN agents consistently demonstrate better per-
formance over PPO Baseline, with higher average episodic rewards in all three environments.
XLVIN-R has smaller variances, suggesting better stability than XLVIN-B. Furthermore,
all three environments are conducted with a small number of train episodes, showing how
XLVIN agents can learn in a low-data regime. This suggests that combining value iteration
subroutines into an RL agent helps in producing better policy with good sample efficiency,
addressing the data hunger problem suffered by most Deep RL agents.
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4.2.2 Predictability

We have seen that the pre-trained GNN generalises well onto out-of-distribution data in Section
[4.1] However, we also want to evaluate if it is still making meaningful predictions when plugged
into XLVIN, especially when the node and edge feature definitions are different due to the lack
of MDP data.

We can further test two hypotheses: (i) whether it predicts state-value function V*(s) accurately,
and (ii) whether the prediction is not due to Encoder’s effect.

Environment: The XLVIN-R model was tested in a self-constructed Maze environment (Section
3.1.2). The Maze environment was used because a fully tabulated MDP is needed to compute the
ground-truth values from value iteration, which is intractable for OpenAl Gym’s environments.

Set-up: The mazes were ranked according to difficulty levels, based on the length of the shortest
path from start to goal. Therefore I chose to train in a curriculum manner: the model was
trained with mazes from the lowest difficulty and only allowed to proceed to the next level if it
solved more than 95% of the train mazes.

Evaluation metrics: To test the two hypotheses, for each model trained until each difficulty
level, I took the state embedding before Executor (i.e. Encoder outputs ﬁs), and the updated
state embedding after Executor (i.e. Executor outputs )Zs), then conducted an R-squared test
to measure their goodness of fit with the ground-truth value function V*(s) computed from
value iteration. A higher R-squared value indicates better fit, thus better prediction.

Discussion of results:

V* predictability Generalisation Ability
100 Test level

80
60
40
- 20
.
i
1 2 3 4 5

1 2 3 4 5
Maze difficulty level Train difficulty level

1
- 2

5}

o
©
o bW

=)
=

R-squared measure for goodness of fit
=) )
(=] (=]
=
Passed percentage(%)

=)
o

Figure 4.2.2: (a) R-squared measure on V* predictability of Encoder and Executor outputs.
(b) The success rate of agents by testing trained models on out-of-distribution test mazes.

From Table , we can see Encoder’s output A, only reaches around R? ~ 0.85 of fitting
the ground-truth V* values, while Executor’s output successfully raises the predictability to
R? = 1.0. This indicates the accuracy of Executor’s outputs, as well as proving its contribution
towards better predictions.

4.2.3 Generalisation ability

To see if the XLVIN model can generalise to problems different from the training environments.
I took the models trained with mazes of each difficulty level and tested them on other difficulty
levels. From Table [£.2.2b, we can see trained models at level=3 or 4 already can generalise
reasonably well to more difficult maze levels, showing XLVINs’ generalisation ability.
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4.3 CNAP on continuous control

CNAP was proposed based on XLVIN for continuous control problems. CNAP discretises the
continuous action space into discrete action bins. We want to explore the following questions:
Qn: How well can CNAPs perform in continuous control environments?

e Can CNAPs outperform a discretised version of PPO Baseline on continuous control
problems? (4.5.1

e How many action bins should we discretise the continuous action space into? i.e. What is

the optimal width of GNN?

o How many steps of message-passing should we perform? i.e. What is the optimal depth of

GNN?

Environment choice:

MountainCarContinous-v0

Figure 4.3.1: Tllustration of the selected continuous control environment

To evaluate CNAPs on continuous control problems, I chose MountainCarContinuous-v0 (Figure
from OpenAI Gym’s Classic Control suite. A detailed description is in Appendix In
short, it allows the agent to specify a force magnitude from a continuous range. Furthermore, it
puts larger penalties on larger forces, making it more challenging for the agent to balance the
exploration-exploitation trade-off.

4.3.1 Performance, Stability, and Data Efficiency

Discussion of results:

Model MountainCarContinuous-v0
PPO Baseline -4.96 + 1.24
CNAP-R 63.41 + 37.89
CNAP-B 55.73 + 45.10

Table 4.3.1: Mean episodic rewards using PPO Baseline and two variants of CNAP
agents. The best performing model is highlighted in bold. The continuous action space is
discretised into 10 action bins. Both CNAP agents execute one step of message-passing.

As seen in Table [£.3.1] both two variants of the CNAP agents have significantly better perfor-
mances than the PPO Baseline. One difficulty of this environment comes from how it penalises
larger forces. The PPO Baseline gives an average episodic reward close to 0, which means it
prefers not to do anything to avoid penalties and never manages to learn the successful policy.
On the contrary, both CNAP agents have positive average rewards, suggesting that they can
escape from being fooled by the temporary negative rewards and solve the problem in most
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cases. Note the agent only receives a large positive reward when it succeeds, otherwise the
overall rewards would be negative, explaining the larger variance for CNAPs. CNAP-R not only
has the best performance but also demonstrates better stability than CNAP-B. Furthermore,
the models are trained with only 100 episodes as before, so it suggests CNAPs retain the good
data efficiency from XLVINs.

4.3.2 Effect of GNN width (Extension)

We made one crucial choice on the number of action bins when discretising the continuous
action space. The number of action bins defines the size of the discretised action space and how
much information to sacrifice from discretisation. It also defines the degree of the GNN nodes,
which is the width of the GNN. It is natural to ask how this choice would impact CNAP’s
performance on continuous control problems.

Model Action Bins MountainCarContinuous-v0
5 -2.16 £ 1.25
PPO 10 -4.96 £ 1.24
15 -3.95 £ 0.77
5 20.32 + 53.13
CNAP-R 10 63.41 + 37.89
15 26.21 + 46.44
5 29.46 + 57.57
CNAP-B 10 55.73 £ 45.10
15 22.79 + 41.24

Table 4.3.2: Mean episodic rewards using PPO Baseline and CNAP agents with varied
number of action bins. Both CNAP models perform one message-passing step.

As seen in Table [4.3.2] discretising into 10 action bins gives the best performance. This shows
the importance of an appropriate action space size to give better performances. One possible
explanation is that a smaller number of 5 action bins constrains the action choices too much,
while a larger number of 10 action bins makes the policy more difficult to learn.

4.3.3 Effect of GNN depth (Extension)

Another choice we made was how many message-passing steps the GNN should perform, which
is also the number of value iteration updates to simulate. The number of GNN steps also defines
the depth of the graph constructed, i.e. how many layers of nodes to expand. Below, I explored
the effect of using different numbers of GNN steps on the performance of CNAPs.

Model | GNN Steps MountainCarContinuous-v0

63.41 £+ 37.89
34.49 £ 47.77
43.61 £ 46.16
55.73 £ 45.10
46.93 £ 44.13
40.58 £ 48.20

CNAP-R

CNAP-B

W N WD -

Table 4.3.3: Mean episodic rewards using CNAP agents with varied number of message-
passing steps. All models discretise into 10 action bins.
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As seen in Table the best performance is given by using only one message-passing step,
while increasing the number of steps weakens the performance. There are several possible
explanations for this observation. One possibility is that a deeper GNN graph implies a larger
size, which may require more training data. Similarly, an increase in depth relies on using
the Transition function multiple times, which is also a function to be trained; furthermore,
imprecision in Transition may add up as the graph goes deeper, leading to inappropriate next
state embeddings. Lastly, the oversmoothness is an infamous side-effect of graph convolutions
which exacerbates with the depth of a GNN : Recall that message-passing uses an aggregate
operation to gather messages from connected neighbours, which is a sum operator in our
case. The aggregator may overly smooth the node features as more message-passing steps
are performed, making nodes less distinguishable from each other, thus leading to suboptimal
predictions.

4.4 CNAP on complex continuous control (Extension)

While MountainCarContinuous-v0 only has one-dimensional action space, we want to evaluate
whether CNAP can handle complex continuous control environments that go beyond a single
dimension. CNAPs were extended with a factorised joint policy and a neighbour sampling
method. Four possible methods for sampling were proposed in Section (1) Manual-
Gaussian (2) Learnt-Gaussian (3) Reuse-Policy (4) Learnt-Sampling. We want to explore the
following questions:

Qn: How well can CNAPs perform in highly complex continuous control environments?

e Can CNAPs outperform PPO Baseline in more complex environments with the proposed
extensions? (4.4.1

o How much performance do we lose from only sampling a subset of actions to expand rather

than expanding all possible actions? (4.4.1).(i))
e Which neighbour sampling method works the best?

o Can we interpret the results?

4.4.1 Scalability

(iv) Humanoid

(i) Swimmer-v2 (ii) Halfcheetah-v2 (iii) Humanoid-v2
Standup-v2

Figure 4.4.1: Illustration of the selected MuJoCo environments

Environment choices: To evaluate CNAPs’ ability in environments with complex dynamics,
I selected four environments (Figure from OpenAl Gym’s MuJoCo suite with
increasing complexity. A detailed description can be found in Appendix [A.4] In short, MuJoCo
environments have much higher dimensions in both their observation and action spaces. They
present a series of physical simulation and robotics control tasks closer to real-world domains.
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Models under evaluation: Only CNAP-R (GNN trained with Erdés-Rényi graphs) was
evaluated against PPO Baseline. CNAP-B (trained with binary trees) was no longer tested as
it was proposed to suit environments with bi-directional control. Here, the environments have
more complex dynamics than only two directions.

Evaluation metrics: MuJoCo environments converge slowly and take a lot more timesteps to
learn. It is a common practice in RL literature to draw the learning curve of the training process.
A learning curve means plotting the average episodic rewards against the number of training
timesteps. Therefore a higher mean episodic reward indicates better performance, a smaller
variance means higher stability, and a faster convergence suggests better data efficiency. I
chose to aggregate the mean episodic rewards over 100 episodes, and repeat with 5 seeds.

Suite Environment ObSGI:V&thI'I space AC?DIOII space
dimension dimension

Classic Control Moup tainCar 2 1
Continuous-v0

Swimmer-v2 8 2

MuJoCo HalfCheetah-v2 17 6

Humanoid-v2 376 17

HumanoidStandup-v2 376 17

Table 4.4.1: Comparison of environment complexity (dimensions of observation and action
spaces) between MuJoCo suite and Classic Control suite.

To evaluate CNAP’s scalability, below I present the evaluation in the order of increasing
environment complexity, as illustrated in Table [4.4.1]

(i) Lower dimensional environment: Swimmer

I first tested the models on a relatively lower-dimensional environment: Swimmer-v2, where the
action dimension is 2. This means it is still tractable to compare with a “benchmarking” CNAP
that expands all possible actions as neighbours. For example, when the number of action binsE]
is 11, there are 112 = 121 actions.

- 8 & 8 8 8 B8

(a) Manual-Gaussian (b) Learnt-Gaussian (c¢) Reuse-Policy (d) Learnt-Sampling

Figure 4.4.2: Learning curves of CNAP with expanding all actions (green), CNAP with
neighbour sampling method (red), and PPO baseline (blue) in Swimmer using different
sampling methods. The mean is shown by the line, and the standard deviation is illustrated
by the shadow.

! According to previous work [33], the best performance on MuJoCo environments is obtained when 7 < N < 15,
where N is the number of action bins. I chose to take NV = 11 here for all the experiments on MuJoCo tasks.
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Results: Asseen in Figure|d.4.2 all CNAPs outperformed the PPO Baseline. The four sampling
methods all produced comparable performances as the “benchmarking” expanding-all-actions
version, showing the effectiveness of the proposed sampling methods. Furthermore, Manual-
Gaussian and Reuse-Policy performed better than Expand-All, suggesting that an appropriate
selection of actions may filter out lower quality ones, producing better state-value function
prediction and consequently better policy.

(ii) Higher dimensional environment: HalfCheetah

I then moved on to an environment with 6-dimensional action space, Halfcheetah. Here, an
enumeration over the discretised action space becomes impossible. For example, 11 action bins
in 6 dimensions means 11°¢ actions.

Halfcheotah Halfcheetah

— pPO.
— CNAP-eart-sampling

20 . 8x0 27 Sxp

& 1000

(a) Manual-Gaussian (b) Learnt-Gaussian (c¢) Reuse-Policy (d) Learnt-Sampling

Figure 4.4.3: Learning curves of CNAP (red) and PPO baseline (blue) in Halfcheetah,
using different sampling methods.

Results: As seen in Figure [£.4.3] CNAPs outperform the PPO Baseline from the increased
complexity in all cases. Again, Manual-Gaussian and Reuse-Policy are the most promising
sampling strategies. This points to the importance of a well-chosen Gaussian distribution and
the power of parameter reuse.

(iii) Even higher dimensional environments: Humanoid, HumanoidStandup

Finally, T tested CNAPs with Manual-Gaussian and Reuse-Policy on two environments with
17 action dimensions, Humaoid and HumanoidStandup. The robot is upgraded from a 2D
halfcheetah to a 3D humanoid, which is intrinsically more difficult yet exhibits more potential
in mapping onto real-world applications.

Humanoid Humanoid HumanoidStandup HumanoidStandup
2000 2000

5 1500

(al) Manual-Gaussian (a2) Reuse-Policy (b1) Manual-Gaussian (b2) Reuse-Policy

Figure 4.4.4: Learning curves of CNAP (red) and PPO baseline (blue) in Humanoid (a)
and HumanoidStandup (b), using Manual-Gaussian and Reuse-Policy.

Results: As we can see from Figure[£.4.4] the gain from CNAPs with sampling is also significant
in Humanoid. However, in HumanoidStandup, we note that although Manual-Gaussian has a
slight improvement over PPO Baseline, Reuse-Policy does not display much benefit. This brings
us to take a closer look at the interpretation of results.
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4.4.2 Interpretation Analysis

As discussed in Section a VideoRecorderWrapper was used to schedule a video recording
routine to capture the interaction of the agent with the environment. To interpret the learning
curves, I chose to look at the selected frames at equal time intervals from one episode after the
last training iteration by CNAP (Manual-Gaussian) and PPO Baseline, respectively.

Swimmer: PPO

P R R

P O O

Figure 4.4.5: Selected frames of two agents in Swimmer

As seen in Figure CNAP can fold itself slightly faster than PPO Baseline in this episode,
and it also swims a little bit more quickly.

HalfCheetah: PPO

Figure 4.4.6: Selected frames of two agents in HalfCheetah

From Figure we can see the agent instructed by PPO Baseline falls over quickly and never
manages to turn it back. However, CNAP’s agent can balance well and keeps running forward.
This explains why CNAP has much higher average episodic rewards than PPO Baseline in

Figure [£.4.3]

Humanoid: PPO

Humanoid: CNAP

Figure 4.4.7: Selected frames of two agents in Humanoid

Similarly, in Figure PPO Baseline’s humanoid stays stationary and loses balance quickly,
while CNAP’s humanoid can walk forward in small steps. This aligns with our results in Figure
[4.4.4 where the gain from CNAP is significant.
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HumanoidStandup: PPO

Figure 4.4.8: Selected frames of two agents in HumanoidStandup

Then we notice that although in Figure 4.4.4]s HumanoidStandup task, the quantitative
performances between PPO Baseline and CNAP are similar, Figure reveals some different
results. Both agents fail to stand up, explaining why the episodic rewards are similar numerically.
However, the PPO Baseline agent loses balance and falls back to the ground while the CNAP
agent remains sitting, trying to get up. We therefore can still say the CNAP qualitatively
performs better in this example.

Discussion: The interpretation from video captures provides a qualitative explanation of the
numerical results we obtained previously and reveals some unseen information. We can see
CNAPs seem to benefit more as the complexity of the environment rises, which PPO Baselines
can no longer solve. These are promising results as complexity has always been a challenge to
RL agents, and the results prove the effectiveness of the proposed extensions in CNAPs. It also
unveils the potential of CNAPs to be scaled up for more complex real-world RL applications.

4.5 Success Criteria

The project has met all Success Criteria of the core project, as well as all the Extensions.
Based on the evaluation results above, I now demonstrate how the main deliverables have been
achieved.

4.5.1 Core Project

e GNN Executor: I successfully implemented a message-passing GNN that simulates value
iteration algorithm. I generated a set of synthetic graph-structured data for training and
testing. The trained GNN has demonstrated high accuracy in mimicking value iteration
and can generalise well onto out-of-distribution data .

e XLVINSs: I set up the interfaces for a range of environments and constructed a pipeline
for training and testing. I also built a competitive baseline agent using the PPO algorithm.
I then implemented two variants of XLVIN models, which both demonstrated superior
performances to the PPO Baseline on a set of discrete control environments . The
results showed that XLVINs could learn well even within a low data regime, aligning
with the original paper’s results of being sample efficient. Then I further evaluated the
predictability and generalisation ability of the plugged-in GNN Executor with
a self-constructed Maze environment, demonstrating its effectiveness as a core processor
for XLVINS.

e CNAPs: I extended XLVINs into CNAPs by discretising the continuous action space
to allow the handling of continuous control. CNAPs outperformed PPO Baseline in
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the selected continuous environment, demonstrating how CNAPs inherited the sample
efficiency from XLVINs while extending the solvable problem scope (4.3.1]).

4.5.2 Extensions

e Performance with GNN size: I explored the performance of CNAPs with varied GNN
sizes, taking a deeper look at the relationship between model effectiveness and architectural
set-up (4.3.2} [4.3.3). I also proposed several explanations for the empirical results.

e Scale to multi-dimensional action space: I identified two architectural bottlenecks in
XLVINs and then proposed to use a factorised joint policy to deal with higher dimensional
action space.

e Scale to highly complex action space: I then proposed to use a neighbour sampling
method to tackle the second bottleneck, with four different solutions. I evaluated CNAPs
with the two extensions on a set of increasingly complex continuous environments, where
CNAPs showed significant improvement over the PPO Baseline . I also provided an
interpretation analysis of the numerical results . The results positively showed that
CNAPs could perform well in high-dimensional continuous control problems with complex
dynamics. This contributes to filling the gap between a theoretical model and real-world
reinforcement learning applications.

e Open-source as a package: Finally, since XLVIN had not released its code by the time
of my dissertation, I open-sourced my implementation together with my extensions as a
package using setuptools to benefit the wider research community with transparency
and accessibility.



Chapter 5

Conclusions

In this chapter, I conclude with success achieved by this project , and discuss my reflection
and lessons learnt . Finally, I point directions for possible future work ,

5.1 Achievements

The project was a success, meeting all Success Criteria and Extensions. I successfully im-
plemented XLVINs despite the numerous hyperparameters and stochasticity in environments
that make reproducing in RL difficult. Then I proposed CNAPs, which broke the complexity
constraints faced by XLVINs and demonstrated CNAPs’ effectiveness in a series of complex
continuous control tasks. I successfully expanded the application scope of such an RL agent
empowered by algorithmic reasoning. The ability to solve complex continuous tasks reveals
CNAPs’ potential in more real-world applications, such as autonomous driving and robotics
simulation. Furthermore, CNAPs can produce better policy under low data settings. The
sample efficiency makes CNAPs more desirable, especially for applications where data collection
is difficult and costly, addressing the data hunger suffered by conventional Deep RL agents.

Apart from its interests in Deep RL, my project also demonstrate the power of Neural Algorithmic
Reasoning, tackling the rigid input constraints in classical algorithms. Additionally, it proposes a
novel setup to align discrete neural network processes with discrete algorithms under continuous
inputs, and it shows we can incorporate appropriate techniques to address the architectural
bottlenecks. These opened a new pathway in demonstrating how we can combine classical
algorithms with the broader machine learning domain closer together.

5.2 Lessons Learnt

Given the novelty of the topics involved, I equipped myself with most theories by reading
relevant research papers, where many useful ones came out even during the project. Given the
exploratory nature of extensions, it proved to be an essential skill to learn how to research for a
broader and deeper understanding.

I also honed my project management skill which required careful planning and quick adaptation
due to the tight time constraint and uncertainty in extensions. Open-sourcing the implementation
also trained me to maintain good software engineering techniques and clear documentation
throughout the project.

Upon reflection, I found it tedious to fine-tune the numerous model hyperparameters, given
that each set of experiments can take days to complete. The problem was exacerbated by the
difficulty in explaining Deep RL models. I would adopt a more systematic and deterministic
approach for future projects.
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5.3 Future Work

There are several possible future directions that I propose as follows, which were not explored
due to the time constraint of this project:

e Other design choices: I used a factorised joint policy from [33] to deal with the combinatorial
explosion resulting from discretisation. However, there are other possible choices, such as the
sequential policy model proposed by [31] which may bring other benefits.

¢ Ordinal relationship in discretisation: One drawback of the discretisation technique I
used was how the continuous actions are now treated as independent discrete action bins,
losing the ordinal relationship. Many previous works dedicated to this problem, such as [3§]
which introduces a stick-breaking likelihood to incorporate ordinal information, may also
enhance the current models.

e Other in-depth interpretation analysis: I chose to interpret the learning curves by looking
at video recordings, but this approach lacks a quantitative interpretation to precisely align
with the numerical results. A more rigorous interpretability analysis on model explanation,
outcome explanation, and model inspection [39] will be helpful, especially before employing
them in safety-critical applications. Previous work such as [40], where they use the produced
trajectory to train a Soft Decision Tree [41] and interpret the learnt policy, can be a good
starting point.

e Other quantitative evaluation methods: Rishabh et al. (2021) |42] recently argued that
due to RL agents’ sensitivity towards stochasticity, the current evaluation methods should be
strengthened. They proposed three evaluation methods for a more rigorous analysis across
runs and tasks. These will be very helpful in further evaluating CNAPs with more credibility
and in broader domains. Furthermore, other on-policy optimisation algorithms that are more
capable of solving continuous control tasks than PPO can also be used as baseline models.
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Appendix A

Additional information

A.1 Proximal Policy Optimisation
Proximal Policy Optimisation (PPO) [20] is an on-policy optimisation algorithm based on policy
gradients. It performs a local search for the optimal policy that maximises the overall return.

On-policy means it uses the same policy to generate data and compute the loss, while off-policy
uses a different policy for data generation. PPQO’s loss function consists of three components:

Lppo(0) = LEMPHVERS(9) = B[LYP(0) — ¢, LYY (0) + c,S[m](s)] (A.1.1)

where 6 is the policy parameter, ¢,y and ¢y are coefficients.

(i) Clipped surrogate objective

The main component of PPO’s loss function is a clipped surrogate objective:

LEYP(9) = By [min(r,(0) Ay, clip(r(0),1 — €, 1 + €)A,)] (A.1.2)

where 7,(0) is the ratio between the current policy 7y and previous policy mg,,,,

0=

and A, is the advantage function that measures how desirable an action is in the current state,
computed by Generalised Advantage Estimation (GAE):

Ay =06, + (WN)0s1 + . + (N5, (A.1.4)

where 7 is the discount and A is a smoothing parameter,

(St =7+ ’}/V(St+1) — V(St) (A15)
We can interpret the surrogate objective Tt(H)flt as finding the best policy my that optimises an

estimate of the expected cumulative rewards. The clipping operation keeps the new policy close
to the old one so that it counters the large gradient variance problem.

(ii) Squared-error loss

PPO’s loss function also includes the squared error of value function:

LT (0) = (Vo(se) = V)2 (A.1.6)

45
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where Vj(s;) is the state-value function under current policy 6, and V"9 is the target value.

(iii) Entropy bonus

Lastly, the loss function also takes into account of an entropy bonus for sufficient exploration:
Slmo|(s¢) (A.1.7)

The PPO loss objective is compatible with Stochastic Gradient Descent (SGD), and its simplicity
has made it a default algorithm in OpenAl. It has been empirically found to be sample efficient
while demonstrating good performance.
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A.2 Pseudocode for Executor

Executor (X : R¥ — RF) takes a state embedding h, and constructs a graph where a pre-
trained GNN can execute message-passing to imitate value iteration algorithm. The following
pseudocode aids the explanation in Section [3.3.2] on how such a graph is constructed.

Algorithm 3 Executor

Input : State embedding ﬁm from Encoder
Output: Updated state embedding X,
current Layer = [(hin, J);

for + = 1,2,...,t do

for (h,, _) in currentLayer do
for a € A do
B, =T(hs,a) ; // node feature
€y _ys=concatenate(a,y) ; // edge feature
N(ES).append(/;;, Colss) ; // neighbours of h,
end
end
current Layer < {N(h)}, for all h, seen in currentLayer
end
/* The graph G = (V,E) is stored as: */
/*x 'V ={node_feature} */
/*  E = {(sender,receiver, edge_feature)} */

/* which are inputs to the pre-trained message-passing GNN to imitate value
iteration behaviour, producing AX;. */
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A.3 List of graph types

The GNN Executor was evaluated on a list of different graph types in Section [4.1} Here is a
description of each graph type used for evaluation.
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Erdés-Rényi Barabasi-Albert Star Caveman Caterpillar
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Lobster Tree Grid Ladder Line

Figure A.3.1: Illustration of each graph type created with networkx

Erdés-Rényi [43]: A graph of n nodes is constructed by randomly connecting two nodes by
an edge with probability p, independently from all other edges.

Barabasi-Albert [44]: A graph of n nodes is grown by attaching new nodes with m edges
following the Barabasi-Albert preferential attachment model where more connected nodes will
more likely to receive new links.

Star: A graph of n + 1 nodes is constructed by attaching n nodes to a centre node.
Caveman [45]: A graph is constructed by randomly forming [ cliques with clique size k.

Caterpillar [46]: A graph is constructed from a backbone of size n, and randomly attaching
m nodes to the backbone.

Lobster: A graph is constructed from a backbone of size n, and randomly connecting m nodes
to the backbone, where the m nodes are further randomly prolonged by [ nodes.

Tree: A tree of size n is constructed with a power law degree distribution. This means for a
node with degree k, probability p(k) oc k=7 where v is a parameter setting the exponent.

Grid: A 2-dimensional grid of size n x m.
Ladder: A 2-dimensional grid of size 2 x n.

Line: A line consisting of n nodes.
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A.4 List of environments

In Chapter [d, XLVINs and CNAPs were evaluated in a range of RL environments. Here is a
description of each environment used.

A.4.1 Discrete Classic Control

CartPole-v1 Acrobot-v1 MountainCar-v0

Figure A.4.1: Illustration of discrete classic control environments from [23]

CartPole-v1 [47]: The goal is to maintain a pole loosely connected to a cart to stay upright as
long as possible. The cart is placed on a frictionless surface. The agent can push the cart to the
left or right at each timestep, and it receives a reward of +1 for each successful timestep. The
episode terminates when the pole falls more than 15 degrees from vertical or if the cart moves
more than 2.4 units from the starting position. It also ends on timeout at 200 timesteps.

Acrobot-v1 [48]: The system consists of two links connected via an actuated joint. The top
link is attached firmly to the ceiling. The system starts vertical, and the goal is to swing the
end of the lower link up to a certain height as quickly as possible. The agent can perform 3
possible actions: push left, no action, or push right. It receives a negative reward of -1 until
success or until time-out at 500 timesteps.

MountainCar-v0 [49]: The car is initially positioned at the bottom of the valley. The agent
aims to drive up the car to the right hill as quickly as possible by accumulating momentum from
applying an acceleration to the left or right, or doing nothing. It receives a negative reward of
-1 at each timestep until success or until time-out at 200 timesteps.

There are two notable challenges in these environments. Firstly, on dense and sparse rewards:
CartPole-v0 rewards at each successful timestep, thus giving dense rewards. However, Acrobot-v1
and MountainCar-v0 only give large positive feedback when the goal is reached, which are sparse
rewards. Sparse rewards are harder to learn as the agent is less guided in evaluating how valuable
the actions are. Secondly, on exploration and exploitation: Acrobot-vl and MountainCar-v0
penalise at each timestep for not yet reaching the goal. The agent thus should learn how to
balance the trade-off between sufficient exploration of the environment and exploitation of the
best action combinations.
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A.4.2 Continuous Classic Control

MountainCarContinous-v0

Figure A.4.2: Illustration of continuous classic control environments from

MountainCarContinuous-v0 : It extends from MountainCar-v0 in the way that it requires
more precision by allowing the agent to specify the action’s magnitude from a continuous range.
For example, applying a left acceleration with magnitude 0.2 corresponds to action a = 0.2. The
goal is to drive the car up to the right hill as quickly as possible, with minimum forces applied.
Therefore, the agent receives a negative reward of —0.1 * a2, relative to the magnitude of the
force applied. The episode ends on success with a positive reward of +100 or on a timeout of
999 timesteps.

Besides the intrinsic difficulty from a discrete to continuous action space, the problem also poses
a more significant penalty at larger forces. The penalty means the agent should additionally
balance the trade-off between exploring a larger force while keeping the overall penalty low. For
example, since a positive reward is only given if the goal is reached, an agent that does nothing
until timeout gives better results than an agent that explores different action magnitudes but
fails.

A.4.3 MuJoCo

Humanoid
Swimmer-v2 Halfcheetah-v2 Humanoid-v2

Standup-v2

Figure A.4.3: Hlustration of MuJoCo environments from

Swimmer-v2 : The system consists of a 3-link robot connected by two joints in a viscous
fluid. The robot can twist its two joints, with the goal to swim forward as fast as possible.

HalfCheetah-v2: The robot is a 2-dimensional halfcheetah with two legs. The goal is to make
the 2D robot run forward as fast as possible by actuating its six joints in the legs.

Humanoid-v2 : The goal is to make a 3-dimensional two-legged robot move forward as
fast as possible. The robot can operate its 17 joints all over its body to maintain balance and
perform walking.
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HumanoidStandup-v2: The robot is the same as in Humanoid-v2, but initially lying down
on the ground. The goal is to operate its 17 joints to stand up as quickly as possible.

The MuJoCo environments all time out at 1000 timesteps. They offer a set of complex continuous
control tasks that simulate real-life problems in robotics and animation. It can also test and
validate control schemes before actual deployment into physical agents. The complexity of its
dynamics and contact-rich behaviour needs the agents to scale up for computationally-intensive
requirements.
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A.5 List of hyperparmeters

A.5.1 GNN Executor

Name Value Description
Ir 0.005 | Learning rate of optimiser.
epsilon 0.0001 | Epsilon value to determine convergence.
hidden_dimension | 50 Dimension of the hidden layer.

Table A.5.1: List of hyperparameters for GNN Executor

A.5.2 Encoder/Transition

Name Value Description
state_embedding_dimension | 50 Dimension of state embeddings in
the latent space.
num_epochs 10 Number of epochs used for training.
batch_size 128 Batch size used for training.
hidden_dimension 64 Dimension of the hidden layer.

Table A.5.2: List of hyperparameters for Encoder and Transition

A.5.3 PPO
Name Value Description
Ir 0.0003 | Learning rate of optimiser.
gamma 0.99 Discount factor v determining how much emphasis is put
in the distant future rather than the immediate future.
clip_param 0.2 Clipping parameter € controlling the degree of clipping.

value_loss_coef | 0.5
entropy_coef 0.01
transe_loss_coef | 0.001

gae_lambda 0.95
max_grad_norm | 0.5
ppo_epoch 5

num_minibatch | 128

Coefficient ¢, for LVF(0).

Coefficient ¢4 for S[m].

Coefficient A for Loyansk.

Smoothing parameter in GAE’s A-return for stability.
Degree of clipping on norm of gradients.

Number of PPO training epochs.

Number of minibatches for SGD.

Table A.5.3: List of hyperparameters for training with PPO
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Introduction

A Reinforcement Learning (RL) problem involves a learning agent that interacts with the
environment to achieve an explicit goal. Its interaction with different domains has benefited
many real-life applications, such as automated medical diagnosis and robotics manipulation.
These problems usually require planning, which means we need to take possible future situations
into account when we select actions to take.

Specifically, the agent can observe the state of the environment and learn to take actions to
influence the state. The agent chooses which action to take depending on the state according to
a policy. The environment responds with a reward signal, and the goal is to maximise the total
reward the agent receives over the long run. A wvalue function specifies how good the state is,
that is, the total amount of reward an agent is expected to receive over time from that state.

Value iteration is a dynamic programming algorithm that can iteratively estimate the value
function, from which we can obtain the optimal policy. Graph Neural Networks (GNNs) are
well-suited to learn the value iteration function due to the alignment between value iteration and
graph convolution rules. This has been proven to be effective in the previous work of XLVIN
[11] which shows GNNs can model value iteration functions under supervised learning settings.

One limitation of XLVIN is that it only supports RL problems in discrete action space, but
not continuous ones. Continuous space is more complex because there is an infinite number
of feasible actions. However, there are many important RL problems whose action space is
continuous in nature, especially in simulated or real-life system control tasks, such as navigation
systems. Many branches of RL problems that involve continuous and dynamic activities fall
under this category.

Another limitation of XLVIN is its computation complexity. Given a state, we need to construct
a graph by recursively expanding on each state with all the possible actions that it can take,
after which we can execute value iteration on the graph to estimate the state’s value function.
Thus, the size of the graph grows exponentially by the number of possible actions.

Description of project

In this project, I will reproduce XLVIN first by implementing its four core functions:

23
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e Encoder function: A Multilayer Perceptron (MLP) encoder that translates state represen-
tation from the environment to a flat embedding in the latent space.

e Transition function: A Multilayer Percentron (MLP) with TransE [29] loss function that
takes the state embedding and an action, and produces the resultant state embedding in
the latent space.

e Executor function: A Graph Neural Network (GNN) that models the value iteration
function [19], which takes a state and its immediate neighbours’ embeddings to produce
an updated state embedding.

e Actor/Tail functions: The actor function takes the outputs from above and produces
a policy for a given state. The tail function takes the same inputs and produces the
state-value function, which is the expected return from this state.

I will then run the agent on discrete tasks using CartPole, Acrobot, and MountainCar from
OpenAl Gym [23].

e CartPole-v0: A cart is placed on a frictionless surface, with a pole attached to it by a
joint. The goal is to prevent the pole from falling down by applying forces to the left or
right to the cart. Reward is given at each timestep if the pole is maintained.

e Acrobot-vl: Two links are attached together by a joint, with the higher link attached
to the ceiling. We can apply left or right forces to the lower joint. The goal is to swing
the lower end of the lower link to reach a given height. Reward is given at each timestep
based on whether this is achieved.

e MountainCar-v0: A car is positioned at the col of two mountains. It can drive back and
forth to build up enough momentum, in order to reach the top of the mountain on the
right. Reward is given when the goal is achieved, minus the squared sum of actions taken.

The three environments were selected to demonstrate the transferability of the agent. CartPole
and Acrobot provide dense rewards where rewards are given at each timestep, while MountainCar
provides sparse reward where reward is given only when car reaches the top of mountain.
Furthermore, the penalty of taking actions in MountainCar also exposes an exploration challenge
on whether to continue applying actions.

*
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CartPole-v0 Acrobot-v1 MountainCar-v0

Figure B.0.1: Illustrations of the CartPole, Acrobot, and MountainCar environments

Then, since the current XLVIN only supports RL problems on discrete action spaces, I will extend
XLVIN onto problems with continuous action space. I will leverage the results from [33] and
primarily discretize the continuous action space into a finite set of atomic actions. A continuous
XLVIN has not been implemented before and will extend its application scope to a much wider
range as discussed in the Introduction. I will run the agent on the MountainCarContinuous-v0
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from OpenAl Gym, where it also takes the force of driving into account, thus the action space
is continuous. The reward is greater if less energy is required.

As one extension, I can run the agent on more advanced environments from MuJoCo [37],
which contains a set of continuous control tasks that simulates tasks such as robot control and
animation. One environment I can possibly use is Humanoid.

Another extension is to explore the performance of the agent with the number of atomic actions
chosen when discretizing the continuous space.

One other extension is to improve the performance when constructing the graph. Currently, all
states are expanded with each action, leading to exponential increase in state space. I can learn
a policy or use non-parametric methods to selectively expand on some of the states instead.

Success criteria

e Construct the interface to run the environments
e Implement a baseline agent using Proximal Policy Optimization (PPO) |20]
e Pre-train the executor function of the agent

e Implement an agent that can run on discrete action space, and compare with the PPO
baseline

e Implement an agent that can run on continuous action space, and compare with “dis-
cretized” PPO baseline

Possible Extensions

e Run the agent on more complicated continuous environments from MuJoCo

e Explore the performance of the agent with the number of atomic actions chosen when
discretizing the continuous action space

e Implement a policy to selectively expand the states when constructing the graph

e Pack the implementations into an open source library

Evaluation

Executor:

One of the agent’s components is a pre-trained executor is where GNN models value iteration
algorithm. It can be tested on a set of synthetic graphs to evaluate how well it estimates the
value functions.

Before the executor runs, an encoder function is used to map raw states to the latent space. To
evaluate if the executor did meaningful improvement on predicting the value functions, we can
compare the state embeddings before and after the executor to the ground truth values. Here,
mazes will be used as the environment to test on.

Agent:
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A model-free agent without transition and executor functions can be used as a baseline for
evaluation. It will use Proximal Policy Optimisation (PPO) for parameter optimisation.

I will be using environments from OpenAl Gym for testing our agents. For discrete action space
environments, the agent will be tested on CartPole-v0, Acrobot-vl, and MountainCar-v0. And
for continuous action space environments, I will use MountainCarContinuous-vO0.

Our agents will be evaluated against the baseline agent by tracking the scores obtained by the
agents across a given number of episodes.

Starting Point

I have no experience in graph representation learning, however I have taken relevant courses in
Machine Learning and Real-World Data, Data Science, and Artificial Intelligence from Computer
Science Tripos Part TA and IB. I have limited exposure to PyTorch and have not used its relevant
libraries to implement Graph Neural Networks. I have also never used OpenAl Gym before.
I will learn to use the libraries and environments as I start to implement the model. I also
had no knowledge in reinforcement learning, so I had to read various literature and the book
Reinforcement Learning - An Introduction book by Andrew Barto and Richard S. Sutton [1]
during the summer in order to understand the theoretical concepts behind XLVIN.

Timetable

Michaelmas Term:
1. Week 2-3 (15/10/21-24/10/21):
e Read up materials on RL.
e Learn to use the libraries.
e Interact with OpenAl Gym environments.
Milestone: Acquire the foundations needed for the project.
2. Week 4-5 (25/10/21-07/11/21):
e Implement the interface for environments.
e Implement encoder function with MLP.
e Implement transition function with TransE.
Milestone: Tested encoder and transition functions with the interface.
3. Week 6-7 (08/11/21-21/11/21):
e Implement GNN executor of value iteration.
e Implement actor and tail functions with open-source PPO.
Milestone: A baseline agent that can run on MountainCar.
4. Week 8-9 (22/11/21-05/12/21):
e Combine the functions and pretrain.

e Evaluate the pretrained executor.
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e Evaluate the agent on discrete problems.

Milestone: A pre-trained executor. An agent that can run on discrete action space.
Evaluation results in the form of diagrams and tables.

Winter Holiday:
1. Week 1-2 (06/12/21-19/12/21):
e Implement the discretization of the continuous action space.
Milestone: Discretization implemented with modifications to other functions.
2. Week 3-4 (20/12/21-02/01/22):
e Evaluate the agent on continuous problems.

Milestone: An agent that can run on continuous action space. Evaluation results in the
form of diagrams and tables.

3. Week 5-6 (03/01/22-16/01/22):

e Buffer period to wrap up.
Lent Term:

1. Week 1-2 (17/01/22-30/01/22):

e Prepare progress report and presentation.
Milestone: Progress report.

2. Week 3-4 (31/01/22-13/02/22):

e Extension 1: evaluate the agent on MuJoCo

Milestone: Run the agents on a chosen environment of MuJoCo and obtain evaluation
results.

3. Week 5-6 (14/02/22-27/02/22):
e Extension 2: the number of atomic actions
Milestone: Evaluation results in the form of diagrams and tables.
4. Week 7-8 (28/02/22-13/03/22):
e Start writing dissertation: Introduction + Preparation Parts write-up.
e Extension 3: policy to select states to expand.
Milestone: Introduction and Preparation Parts sent for review.
Easter Holiday:
1. Week 1-2 (14/03/22-27/03/22):
e Continue on extensions
e Implementation Part write-up
Milestone: Implementation Part sent for review. Wrap up on the extensions.
2. Week 3-4 (28/03/22-10/04/22):

e Continue on extensions
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e Evaluation + Conclusion Parts write-up
Milestone: Full draft of dissertation. Send to supervisors and DoS for review.
3. Week 5-6 (11/04/22-24/04/22):
e Review dissertation and get feedback
Milestone: Final draft of dissertation for proof-reading.
Easter Term:
1. Week 1-2 (25,/04/22-08/05/22):
e Edit dissertation according to feedback

Milestone: Final dissertation for submission.

Resources required

I will be using my personal laptop (MacBook Pro 2019, 1.4 GHz Quad-Core Intel Core i5, 8 GB,
Intel Iris Plus Graphics 645 1536 MB with macOS Catalina) as my main working device. I will
use Github for backup of code and version control. I will be using Overleaf and Google Docs for
the writing of my dissertation, and backup with Google Drive. I will use public libraries such as
PyTorch to support the development of my code. My personal laptop will be sufficient to run
CartPole, Acrobot, and MountainCar environments, but when it comes to MuJoCo, I will use
GPUs from the bioinformatics groups at the Computer Laboratory if my laptop is not sufficient.
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