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TLDR: We propose a framework to construct bipartite expanders that capture higher-order interactions while
leveraging expander properties, in order to mitigate the over-squashing problem for GNNSs.

Hypergraphs as bipartite graphs Expander graphs
A k-regular graph G = (V, E) is said to be a c-expander graph if
|Oous(A)]
>
+ Al =°

for all subsets A C 'V with |A| < %

Properties: highly connected, sparse graph, low diameter
A hypergraph (left) can be represented as a bipartite

graph (right), where nodes are at the left-hand side and Previous works [1, 2, 3] apply expander graphs in GNNs to
hyperedges at the right-hand side. overcome the over-squashing problem - where information

from an exponential number of neighbors gets compressed into

Bipartite expanders to capture higher-order interactions. a fixed-size vector, leading to potential information loss .

Higher-Order Expander Graph Propagation _
Experimental results
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Construction of bipartite expanders: To deal with the hyperedge node features, we propose two

(i) Perfect matchings methods: learn the features end-to-end (Learned Features) or
perform summation during left-to-right message passing on

A matching on a graph is defined as a set of edges the bipartite expander (Summation).

without common vertices, and a perfect matching is a
matching which contains all vertices of the graph. (ii)) OGBG-code2

We construct bipartite expanders by taking the union of
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the largest magnitude non-trivial eigenvalue.

We additionally impose Ramanujan condition that gives We compare our model with GIN [4] and EGP [1], aggregating
low diameters and high expander constants. the results over 10 seeds with the same setup.

Message passing framework: Conclusion & Future work

1. Augment the original graph with hyperedge nodes. - We show Dbipartite expanders can help to alleviate over-

2. Construct bipartite expanders using perfect squashing problem in GNNs by additionally capturing higher-
matchings or Ramanujan bipartite graphs. order interactions.

3. Perform message-passing on the original graph. - Datasets: long-range dependencies.

4. Perform bi-directional message-passing on the - Bipartite expanders: explicit construction
bipartite expander graph. methods.

5. Interleave two message-passing layers, with the - Bipartite message passing: hypergraph
original graph as the first and last layers. neural networks.

Bibliography

[1] Andreea Deac, Marc Lackenby, and Petar VeliCkovi¢. Expander graph propagation, 2022.

[2] Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montufar. Oversquashing in gnns through the lens of information
contraction and graph expansion, 2022.

[3] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, Ali Kemal Sinop. Exphormer: Sparse Transformers for Graphs, 2023.
[4] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. How powerful are Graph Neural Networks? 2018.



