

Higher-Order Expander Graph Propagation

Thomas Christie*, Yu He*,1

* Equal Contribution. Work done at University of Cambridge. ¹ Stanford University

TLDR: We propose a framework to construct **bipartite expanders** that capture **higher-order interactions** while leveraging **expander properties**, in order to mitigate the **over-squashing** problem for GNNs.

Hypergraphs as bipartite graphs

Higher-Order Expander Graph Propagation

Expander graphs

A k-regular graph $G = (V, E)$ is said to be a c-expander graph if

$$
\frac{|\partial_{out}(\mathcal{A})|}{|\mathcal{A}|} \geq c
$$

for all subsets $A \subset V$ with $|A| \leq \frac{|V|}{2}$.

Experimental results

(i) Tree Neighbors Match (ii) OGBG-molhiv

(iii) OGBG-code2

Conclusion & Future work

A hypergraph (left) can be represented as a bipartite graph (right), where nodes are at the left-hand side and hyperedges at the right-hand side.

Bipartite expanders to capture higher-order interactions.

Properties: highly connected, sparse graph, low diameter

Previous works [1, 2, 3] apply expander graphs in GNNs to overcome the **over-squashing problem** - where information from an exponential number of neighbors gets compressed into a fixed-size vector, leading to potential information loss .

Construction of bipartite expanders:

(i) Perfect matchings

satisfies the property $\lambda(\mathcal{G}) \leq 2\sqrt{k-1}$. Here, $\lambda(\mathcal{G})$ is *the largest magnitude non-trivial eigenvalue.*

We construct bipartite expanders by taking the union of *k* disjoint perfect matchings, making them *k*-regular.

- 1. Augment the original graph with hyperedge nodes.
- 2. Construct bipartite expanders using perfect matchings or Ramanujan bipartite graphs.
- 3. Perform message-passing on the original graph.
- 4. Perform bi-directional message-passing on the bipartite expander graph.
- 5. Interleave two message-passing layers, with the original graph as the first and last layers.

Mean \pm STD test F1 score. Best, Second Best and Third Best results are colored.

We additionally impose Ramanujan condition that gives low diameters and high expander constants.

(ii) Ramanujan condition

Bibliography

Message passing framework:

- [1] Andreea Deac, Marc Lackenby, and Petar Veličković. *Expander graph propagation,* 2022.
- [2] Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. *Oversquashing in gnns through the lens of information contraction and graph expansion,* 2022.
- [3] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, Ali Kemal Sinop. *Exphormer: Sparse Transformers for Graphs,* 2023. [4] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. *How powerful are Graph Neural Networks?* 2018.

Mean ± STD test ROC-AUC score. Best, Second Best and Third Best results are colored.

A k-regular graph G is said to be Ramanujan if it

A matching on a graph is defined as a set of edges without common vertices, and a perfect matching is a matching which contains all vertices of the graph.

To deal with the hyperedge node features, we propose two methods: learn the features end-to-end (Learned Features) or perform summation during left-to-right message passing on the bipartite expander (Summation).

We compare our model with GIN [4] and EGP [1], aggregating the results over 10 seeds with the same setup.

- We show bipartite expanders can help to alleviate oversquashing problem in GNNs by additionally capturing higherorder interactions.
- Datasets: long-range dependencies.
- Bipartite expanders: explicit construction methods.
- Bipartite message passing: hypergraph neural networks.

