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the CNAP architecture

eXecuted Latent Value Iteration Nets (XLVINs): 
● neural algorithmic reasoning: pre-train a GNN Executor to simulate value 

iteration behaviour in the latent space 
● implicit planning: no explicit modelling of the MDPs required 
● low data regime: overcome algorithmic bottleneck suffered by other 

VI-based implicit planners (e.g. ATreeC)

Summary: We propose CNAP, an implicit planner to perform in high-dimensional 
continuous control problems by simulating value iteration with neural algorithmic 
reasoning. CNAP inherits XLVIN’s low data merits while addressing its limitations. 

XLVIN 
architecture

(i) Deal with continuous action space: 
● Discretisation by binning: evenly spaced discrete action bins
● However, discretisation results in a combinatorial increase in action space 

(ii) Deal with multidimensional action space:
● Factorised joint policy: linear increase with dimensionality 

(iii) Deal with complex action space:
● Neighbour sampling policy: selectively expand actions
○ Manual-Gaussian: Gaussian(mean=bins/2, std=bins/4)
○ Learned-Gaussian: Gaussian with learnt parameters
○ Reuse-Policy: reuse policy distribution 
○ Learned-Sampling: learnt sampling distribution

bottleneck (ii)

bottleneck (iii)

bottleneck (i)

(i) Best performance:

(ii) Varying GNN depth:

(iii) Varying GNN width: 

PPO Baseline: Encoder + Tail 
CNAP-B: pre-trained GNN with binary graphs 
CNAP-R: pre-trained GNN with Erdős–Rényi graphs 

(i) Halfcheetah:

(ii) Humanoid:

Manual-Gaussian Learned-Gaussian Reuse-Policy Learned-Sampling

(ii) Humanoid Standup:


